277
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Cancer–germline antigen vaccines and epigenetic enhancers: future strategies for cancer treatment

, &
Pages 1061-1075 | Published online: 26 Apr 2010

Bibliography

  • Simpson AJ, Caballero OL, Jungbluth A, Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5:615-25
  • Fijak M, Meinhardt A. The testis in immune privilege. Immunol Rev 2006;213:66-81
  • Gjerstorff MF, Harkness L, Kassem M, Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation. Hum Reprod 2008;23:2194-201
  • Kirkin AF, Dzhandzhugazyan KN, Zeuthen J. Cancer/testis antigens: structural and immunobiological properties. Cancer Invest 2002;20:222-36
  • Van Der Bruggen P, Zhang Y, Chaux P, Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 2002;188:51-64
  • Kawabata R, Wada H, Isobe M, Antibody response against NY-ESO-1 in CHP-NY-ESO-1 vaccinated patients. Int J Cancer 2007;120:2178-84
  • Uenaka A, Wada H, Isobe M, T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein. Cancer Immun 2007;7:9
  • Odunsi K, Qian F, Matsuzaki J, Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci USA 2007;104:12837-42
  • Thurner B, Haendle I, Roder C, Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999;190:1669-78
  • Marchand M, van Baren N, Weynants P, Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 1999;80:219-30
  • Jager E, Karbach J, Gnjatic S, Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc Natl Acad Sci USA 2006;103:14453-8
  • Davis ID, Chen W, Jackson H, Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc Natl Acad Sci USA 2004;101:10697-702
  • Burgdorf SK, Fischer A, Claesson MH, Vaccination with melanoma lysate-pulsed dendritic cells, of patients with advanced colorectal carcinoma: report from a phase I study. J Exp Clin Cancer Res 2006;25(2):201-6
  • van der Bruggen P, Traversari C, A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991;254:1643-7
  • Ct database. Laboratório Nacional de Computação Científica, Brazil. Available from: http://www.cta.lncc.br/. [Last accessed 19 April 2010]
  • Gjerstorff MF, Kock K, Nielsen O, Ditzel HJ. MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development. Hum Reprod 2007;22:953-60
  • Nelson PT, Zhang PJ, Spagnoli GC, Cancer/testis (CT) antigens are expressed in fetal ovary. Cancer Immun 2007;7:1
  • Stevenson BJ, Iseli C, Panji S, Rapid evolution of cancer/testis genes on the X chromosome. BMC Genomics 2007;8:129
  • Golos TG. Nonhuman primate placental MHC expression: a model for exploring mechanisms of human maternal-fetal immune tolerance. Hum Immunol 2003;64(11):1102-9
  • Gjerstorff MF, Johansen LE, Nielsen O, Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy. Br J Cancer 2006;94:1864-73
  • Hofmann O, Caballero OL, Stevenson BJ, Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci USA 2008;105:20422-7
  • Akcakanat A, Kanda T, Tanabe T, Heterogeneous expression of GAGE, NY-ESO-1, MAGE-A and SSX proteins in esophageal cancer: implications for immunotherapy. Int J Cancer 2006;118:123-8
  • Bazhin AV, Wiedemann N, Schnolzer M, Expression of GAGE family proteins in malignant melanoma. Cancer Lett 2007;251:258-67
  • Jungbluth AA, Chen YT, Stockert E, Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 2001;92:856-60
  • Kasuga C, Nakahara Y, Ueda S, Expression of MAGE and GAGE genes in medulloblastoma and modulation of resistance to chemotherapy. Laboratory investigation. J Neurosurg Pediatr 2008;1:305-13
  • Gjerstorff MF, Ditzel HJ. An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members. Tissue Antigens 2008;71:187-92
  • dos Santos NR, de Bruijn DR, van Kessel AG. Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 2001;30:1-14
  • Sahin U, Tureci O, Chen YT, Expression of multiple cancer/testis (CT) antigens in breast cancer and melanoma: basis for polyvalent CT vaccine strategies. Int J Cancer 1998;78:387-9
  • Goydos JS, Patel M, Shih W. NY-ESO-1 and CTp11 expression may correlate with stage of progression in melanoma. J Surg Res 2001;98:76-80
  • Kurashige T, Noguchi Y, Saika T, Ny-ESO-1 expression and immunogenicity associated with transitional cell carcinoma: correlation with tumor grade. Cancer Res 2001;61:4671-4
  • Patard JJ, Brasseur F, Gil-Diez S, Expression of MAGE genes in transitional-cell carcinomas of the urinary bladder. Int J Cancer 1995;64:60-4
  • Cheung IY, Chi SN, Cheung NK. Prognostic significance of GAGE detection in bone marrows on survival of patients with metastatic neuroblastoma. Med Pediatr Oncol 2000;35:632-4
  • Kong U, Koo J, Choi K, The expression of GAGE gene can predict aggressive biologic behavior of intestinal type of stomach cancer. Hepatogastroenterology 2004;51:1519-23
  • Zambon A, Mandruzzato S, Parenti A, MAGE, BAGE, and GAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer 2001;91:1882-8
  • Sienel W, Mecklenburg I, Dango S, Detection of MAGE-A transcripts in bone marrow is an independent prognostic factor in operable non-small-cell lung cancer. Clin Cancer Res 2007;13:3840-7
  • Gure AO, Chua R, Williamson B, Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res 2005;11:8055-62
  • Costa FF, Le Blanc K, Brodin B. Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells 2007;25:707-11
  • Cronwright G, Le Blanc K, Gotherstrom C, Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res 2005;65:2207-15
  • Loriot A, Reister S, Parvizi GK, DNA methylation-associated repression of cancer-germline genes in human embryonic and adult stem cells. Stem Cells 2009;27:822-4
  • Gjerstorff M, Burns JS, Nielsen O, Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy. Am J Pathol 2009;175:314-23
  • Sigalotti L, Covre A, Zabierowski S, Cancer testis antigens in human melanoma stem cells: expression, distribution, and methylation status. J Cell Physiol 2008;215:287-91
  • Gedye C, Quirk J, Browning J, Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells. Cancer Immunol Immunother 2009;58:1635-46
  • Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006;355:1253-61
  • Liu W, Cheng S, Asa SL, Ezzat S. The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis. Cancer Res 2008;68:8104-12
  • Laduron S, Deplus R, Zhou S, MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 2004;32:4340-50
  • Monte M, Simonatto M, Peche LY, MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc Natl Acad Sci USA 2006;103:11160-5
  • Yang B, O'Herrin SM, Wu J, MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 2007;67:9954-62
  • Yang B, O'Herrin S, Wu J, Select cancer testes antigens of the MAGE-A, -B, and -C families are expressed in mast cell lines and promote cell viability in vitro and in vivo. J Invest Dermatol 2007;127:267-75
  • Peikert T, Specks U, Farver C, Melanoma antigen A4 is expressed in non-small cell lung cancers and promotes apoptosis. Cancer Res 2006;66:4693-700
  • Nagao T, Higashitsuji H, Nonoguchi K, MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity. J Biol Chem 2003;278:10668-74
  • de Bruijn DR, van Dijk AH, Willemse MP, van Kessel AG. The C terminus of the synovial sarcoma-associated SSX proteins interacts with the LIM homeobox protein LHX4. Oncogene 2008;27:653-62
  • Lubieniecka JM, de Bruijn DR, Su L, Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 2008;68:4303-10
  • Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 1997;88:375-84
  • Pousette A, Leijonhufvud P, Arver S, Presence of synaptonemal complex protein 1 transversal filament-like protein in human primary spermatocytes. Hum Reprod 1997;12:2414-7
  • Pivot-Pajot C, Caron C, Govin J, Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 2003;23:5354-65
  • Evans JP. Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 2001;23:628-39
  • Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun 2004;4:1
  • McCurdy DK, Tai LQ, Nguyen J, MAGE Xp-2: a member of the MAGE gene family isolated from an expression library using systemic lupus erythematosus sera. Mol Genet Metab 1998;63:3-13
  • Lea IA, Adoyo P, O'Rand MG. Autoimmunogenicity of the human sperm protein Sp17 in vasectomized men and identification of linear B cell epitopes. Fertil Steril 1997;67:355-61
  • van der Bruggen P, Stroobant V, Van Pel A, Van den Eynde B. Shared tumor-specific antigens, cancer immunity, peptide database, Table 2. 2001. Avaialabe from: http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm. [Last accessed 19 April 2010]
  • Stockert E, Jager E, Chen YT, A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 1998;187:1349-54
  • Ayyoub M, Stevanovic S, Sahin U, Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma. J Immunol 2002;168:1717-22
  • Jager E, Nagata Y, Gnjatic S, Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 2000;97:4760-5
  • Chen YT, Scanlan MJ, Sahin U, A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 1997;94:1914-8
  • Gnjatic S, Nishikawa H, Jungbluth AA, NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 2006;95:1-30
  • Jager E, Chen YT, Drijfhout JW, Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 1998;187:265-70
  • Gnjatic S, Atanackovic D, Jager E, Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci USA 2003;100:8862-7
  • Milne K, Barnes RO, Girardin A, Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS One 2008;3(10):e3409
  • Qian F, Gnjatic S, Jager E, Th1/Th2 CD4+ T cell responses against NY-ESO-1 in HLA-DPB1*0401/0402 patients with epithelial ovarian cancer. Cancer Immun 2004;4:12
  • Brasseur F, Rimoldi D, Lienard D, Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer 1995;63:375-80
  • Bolli M, Kocher T, Adamina M, Tissue microarray evaluation of Melanoma antigen E (MAGE) tumor-associated antigen expression: potential indications for specific immunotherapy and prognostic relevance in squamous cell lung carcinoma. Ann Surg 2002;236:785-93; discussion 793
  • Kocher T, Zheng M, Bolli M, Prognostic relevance of MAGE-A4 tumor antigen expression in transitional cell carcinoma of the urinary bladder: a tissue microarray study. Int J Cancer 2002;100:702-5
  • Marchand M, Weynants P, Rankin E, Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 1995;63:883-5
  • Banchereau J, Ueno H, Dhodapkar M, Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J Immunother 2005;28:505-16
  • Fay JW, Palucka AK, Paczesny S, Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34+ progenitor-derived dendritic cells. Cancer Immunol Immunother 2006;55:1209-18
  • Hersey P, Halliday GM, Farrelly ML, Phase I/II study of treatment with matured dendritic cells with or without low dose IL-2 in patients with disseminated melanoma. Cancer Immunol Immunother 2008;57:1039-51
  • Kavanagh B, Ko A, Venook A, Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother 2007;30:762-72
  • Zhang Y, Song S, Liu C, Generation of chimeric HBc proteins with epitopes in E.coli: formation of virus-like particles and a potent inducer of antigen-specific cytotoxic immune response and anti-tumor effect in vivo. Cell Immunol 2007;247:18-27
  • Ge W, Sui YF, Wu DC, MAGE-1/Heat shock protein 70/MAGE-3 fusion protein vaccine in nanoemulsion enhances cellular and humoral immune responses to MAGE-1 or MAGE-3 in vivo. Cancer Immunol Immunother 2006;55:841-9
  • van Baren N, Bonnet MC, Dreno B, Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J Clin Oncol 2005;23:9008-21
  • Ma JH, Sui YF, Ye J, Heat shock protein 70/MAGE-3 fusion protein vaccine can enhance cellular and humoral immune responses to MAGE-3 in vivo. Cancer Immunol Immunother 2005;54:907-14
  • Ye J, Chen GS, Song HP, Heat shock protein 70 / MAGE-1 tumor vaccine can enhance the potency of MAGE-1-specific cellular immune responses in vivo. Cancer Immunol Immunother 2004;53:825-34
  • Sartorius R, Pisu P, D'Apice L, The use of filamentous bacteriophage fd to deliver MAGE-A10 or MAGE-A3 HLA-A2-restricted peptides and to induce strong antitumor CTL responses. J Immunol 2008;180:3719-28
  • Brichard VG, Lejeune D. GSK's antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine 2007;25(Suppl 2):B61-71
  • Kruit WH, van Ojik HH, Brichard VG, Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. Int J Cancer 2005;117:596-604
  • Marchand M, Punt CJ, Aamdal S, Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. Eur J Cancer 2003;39:70-7
  • Brichard VG, Lejeune D. Cancer immunotherapy targeting tumour-specific antigens: towards a new therapy for minimal residual disease. Expert Opin Biol Ther 2008;8:951-68
  • Nicholaou T, Ebert LM, Davis ID, Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin Cancer Res 2009;15:2166-73
  • Jager E, Gnjatic S, Nagata Y, Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 2000; 97:12198-203
  • Adams S, O'Neill DW, Nonaka D, Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 2008;181:776-84
  • Wada H, Sato E, Uenaka A, Analysis of peripheral and local anti-tumor immune response in esophageal cancer patients after NY-ESO-1 protein vaccination. Int J Cancer 2008;123:2362-9
  • Karbach J, Gnjatic S, Pauligk C, Tumor-reactive CD8+ T-cell clones in patients after NY-ESO-1 peptide vaccination. Int J Cancer 2007;121(9):2042-8
  • Valmori D, Souleimanian NE, Tosello V, Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci USA 2007;104:8947-52
  • Diefenbach CS, Gnjatic S, Sabbatini P, Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin Cancer Res 2008;14:2740-8
  • Lopes L, Dewannieux M, Gileadi U, Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8+ and CD4+ T-cell responses. J Virol 2008;82:86-95
  • Bender A, Karbach J, Neumann A, LUD 00-009: phase 1 study of intensive course immunization with NY-ESO-1 peptides in HLA-A2 positive patients with NY-ESO-1-expressing cancer. Cancer Immun 2007;7:16
  • Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 2009;21:233-40
  • Zhao Y, Zheng Z, Robbins PF, Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J Immunol 2005;174:4415-23
  • Hiasa A, Nishikawa H, Hirayama M, Rapid alphabeta TCR-mediated responses in gammaδ T cells transduced with cancer-specific TCR genes. Gene Ther 2009;16:620-8
  • Langer LF, Clay TM, Morse MA. Update on anti-CTLA-4 antibodies in clinical trials. Expert Opin Biol Ther 2007;7:1245-56
  • Berd D, Mastrangelo MJ. Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res 1987;47:3317-21
  • Hadrup SR, Bakker AH, Shu CJ, Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 2009;6:520-6
  • De Smet C, De Backer O, Faraoni I, The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA 1996;93:7149-53
  • De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5′ region of gene MAGE-A1 in tumor cells. Mol Cell Biol 2004;24:4781-90
  • De Smet C, Lurquin C, Lethe B, DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 1999;19:7327-35
  • Loriot A, De Plaen E, Boon T, De Smet C. Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J Biol Chem 2006;281:10118-26
  • Sigalotti L, Coral S, Nardi G, Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J Immunother 2002;25:16-26
  • James SR, Link PA, Karpf AR. Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene 2006;25:6975-85
  • Issa JP. Decitabine. Curr Opin Oncol 2003;15(6):446-51
  • Sigalotti L, Coral S, Fratta E, Epigenetic modulation of solid tumors as a novel approach for cancer immunotherapy. Semin Oncol 2005;32:473-8
  • Heidebrecht HJ, Claviez A, Kruse ML, Characterization and expression of CT45 in Hodgkin's lymphoma. Clin Cancer Res 2006;12:4804-11
  • dos Santos NR, Torensma R, de Vries TJ, Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Res 2000;60:1654-62
  • Woloszynska-Read A, James SR, DNA methylation-dependent regulation of BORIS/CTCFL expression in ovarian cancer. Cancer Immun 2007;7:21
  • Coral S, Sigalotti L, Colizzi F, Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: immunotherapeutic implications. J Cell Physiol 2006;207:58-66
  • Guo ZS, Hong JA, Irvine KR, De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res 2006;66:1105-13
  • Sigalotti L, Altomonte M, Colizzi F, 5-Aza-2′-deoxycytidine (decitabine) treatment of hematopoietic malignancies: a multimechanism therapeutic approach? Blood 2003;101(11):4644-6; discussion 4645-6
  • Schrump DS, Fischette MR, Nguyen DM, Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 2006;12:5777-85
  • Appleton K, Mackay HJ, Judson I, Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol 2007;25:4603-9
  • Fonsatti E, Nicolay HJ, Sigalotti L, Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 2007;13:3333-8
  • Coral S, Sigalotti L, Gasparollo A, Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2′-deoxycytidine (5-AZA-CdR). J Immunother 1999;22:16-24
  • Fonsatti E, Sigalotti L, Coral S, Methylation-regulated expression of HLA class I antigens in melanoma. Int J Cancer 2003;105:430-1; author reply 432-3
  • Adair SJ, Hogan KT. Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother 2009;58:589-601
  • Natsume A, Wakabayashi T, Tsujimura K, The DNA demethylating agent 5-aza-2′-deoxycytidine activates NY-ESO-1 antigenicity in orthotopic human glioma. Int J Cancer 2008;122:2542-53
  • D'Alessio AC, Weaver IC, Szyf M. Acetylation-induced transcription is required for active DNA demethylation in methylation-silenced genes. Mol Cell Biol 2007;27:7462-74
  • Wischnewski F, Pantel K, Schwarzenbach H. Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res 2006;4:339-49
  • Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 2008;269:7-17
  • Steele N, Finn P, Brown R, Plumb JA. Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer 2009;100:758-63
  • Maiso P, Colado E, Ocio EM, The synergy of panobinostat plus doxorubicin in acute myeloid leukemia suggests a role for HDAC inhibitors in the control of DNA repair. Leukemia 2009;23:2265-74
  • Stimson L, Wood V, Khan O, HDAC inhibitor-based therapies and haematological malignancy. Ann Oncol 2009;20:1293-302
  • Vo DD, Prins RM, Begley JL, Enhanced antitumor activity induced by adoptive T-Cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824. Cancer Res 2009;69:8693-9
  • Lopez-Soto A, Folgueras AR, Seto E, Gonzalez S. HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: potential implications for the immunosurveillance of cancer. Oncogene 2009;28:2370-82
  • Tao R, de Zoeten EF, Ozkaynak E, Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 2007;13:1299-307
  • Sigalotti L, Fratta E, Coral S, Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 2004;64:9167-71
  • Woloszynska-Read A, Mhawech-Fauceglia P, Yu J, Intertumor and intratumor NY-ESO-1 expression heterogeneity is associated with promoter-specific and global DNA methylation status in ovarian cancer. Clin Cancer Res 2008;14:3283-90
  • Graf T, Stadtfeld M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 2008;3:480-3
  • Hayashi K, Lopes SM, Tang F, Surani MA. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 2008;3:391-401
  • Schnurr M, Orban M, Robson NC, ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J Immunol 2009;182:1253-9
  • Maraskovsky E, Sjolander S, Drane DP, NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ T-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clin Cancer Res 2004;10:2879-90
  • Zhou Q, Guo AL, Xu CR, A dendritic cell-based tumour vaccine for lung cancer: full-length XAGE-1b protein-pulsed dendritic cells induce specific cytotoxic T lymphocytes in vitro. Clin Exp Immunol 2008;153:392-400
  • Slingluff CL Jr, Petroni GR, Olson W, Helper T-cell responses and clinical activity of a melanoma vaccine with multiple peptides from MAGE and melanocytic differentiation antigens. J Clin Oncol 2008;26:4973-80
  • Atanackovic D, Altorki NK, Stockert E, Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J Immunol 2004;172(5):3289-96
  • Vantomme V, Dantinne C, Amrani N, Immunologic analysis of a Phase I/II study of vaccination with MAGE-3 protein combined with the AS02B adjuvant in patients with MAGE-3-positive tumors. J Immunother 2004;27:124-35
  • Atzpodien J, Reitz M. GM-CSF plus antigenic peptide vaccination in locally advanced melanoma patients. Cancer Biother Radiopharm 2007;22:551-5
  • Davis ID, Chen Q, Morris L, Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J Immunother 2006;29(5):499-511
  • Hersey P, Menzies SW, Coventry B, Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol Immunother 2005;54:208-18
  • Hersey P, Menzies SW, Halliday GM, Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol Immunother 2004;53:125-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.