270
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential

, &
Pages 1649-1661 | Published online: 18 Oct 2010

Bibliography

  • Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-6
  • Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med 2001;52:443-51
  • Sievert KD, Amend B, Stenzl A. Tissue engineering for the lower urinary tract: a review of a state of the art approach. Eur Urol 2007;52(6):1580-9
  • Brehmer B, Rohrmann D, Becker C, Different types of scaffolds for reconstruction of the urinary tract by tissue engineering. Urol Int 2007;78(1):23-9
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145-7
  • Reubinoff BE, Pera MF, Fong CY, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18(4):399-404
  • Jukes JM, Both SK, Leusink A, Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci USA 2008;105(19):6840-5
  • Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007;213(2):341-7
  • Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 2007;59(4-5):207-33
  • Guillot PV, Cui W, Fisk NM, Polak DJ. Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 2007;11(5):935-44
  • Berthiaume F, Moghe PV, Toner M, Yarmush ML. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J 1996;10(13):1471-84
  • Wei G, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater 2008;18(22):3566-82
  • Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28(2):316-25
  • Li C, Vepari C, Jin HJ, Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006;27(16):3115-24
  • Nie H, Wang CH. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 2007;120(1-2):111-21
  • Moroni L, Licht R, de Boer J, Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 2006;27(28):4911-22
  • Shih YR, Chen CN, Tsai SW, Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 2006;24(11):2391-7
  • Mohammadi Y, Soleimani M, Fallahi-Sichani M, Nanofibrous poly(epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif Organs 2007;30(3):204-11
  • Li WJ, Tuli R, Huang X, Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005;26(25):5158-66
  • Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24(12):2077-82
  • Li WJ, Tuli R, Okafor C, A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005;26(6):599-609
  • McCullen SD, Stevens DR, Roberts WA, Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomed 2007;2(2):253-63
  • Xie J, Willerth SM, Li X, The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009;30(3):354-62
  • Kang X, Xie Y, Powell HM, Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials 2007;28(3):450-8
  • Lin HH, Cheng YL. In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules 2001;34(11):3710-15
  • Ren K, Wang Y, Ji J, Construction and deconstruction of PLL/DNA multilayered films for DNA delivery: effect of ionic strength. Colloids Surf B Biointerfaces 2005;46(2):63-9
  • Smith IO, Liu XH, Smith LA, Ma PX. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdis Rev Nanomed Nanobiotechnol 2009;1(2):226-36
  • Ball P. Materials science. Polymers made to measure. Nature 1994;367(6461):323-4
  • Zhang SG. Emerging biological materials through molecular self-assembly. Biotechnol Adv 2002;20(5-6):321-39
  • Fairman R, Akerfeldt KS. Peptides as novel smart materials. Curr Opin Struct Biol 2005;15(4):453-63
  • Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 2004;39(3):125-31
  • Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 2002;99(8):5133-8
  • Barnes CP, Sell SA, Boland ED, Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007;59(14):1413-33
  • Zhang S, Holmes TC, DiPersio CM, Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 1995;16(18):1385-93
  • Beniash E, Hartgerink JD, Storrie H, Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 2005;1(4):387-97
  • Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007;18(3):241-68
  • Silva GA, Czeisler C, Niece KL, Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303(5662):1352-5
  • Hosseinkhani H, Hosseinkhani M, Tian F, Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 2006;27(22):4079-86
  • Garreta E, Genove E, Borros S, Semino CE. Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 2006;12(8):2215-27
  • Garreta E, Gasset D, Semino C, Borros S. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomol Eng 2007;24(1):75-80
  • Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 2006;1:e119
  • Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds. Soft Matter 2008;4(11):2144-9
  • Lee SH, Kim BS, Kim SH, Thermally produced biodegradable scaffolds for cartilage tissue engineering. Macromol Biosci 2004;4(8):802-10
  • Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 1999;47(1):8-17
  • Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 1999;44(4):446-55
  • Chen VJ, Smith LA, Ma PX. Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 2006;27(21):3973-9
  • Zhang R, Ma PX. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 2000;52(2):430-8
  • Xue D, Zheng Q, Zong C, Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res A 2010;94:259-70
  • Nur EKA, Ahmed I, Kamal J, Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 2006;24(2):426-33
  • Yang F, Xu CY, Kotaki M, Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Ed 2004;15(12):1483-97
  • Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003;67(2):531-7
  • Chan CK, Liao S, Li B, Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers. Biomed Mater 2009;4(3):035006
  • Anselme K, Linez P, Bigerelle M, The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials 2000;21(15):1567-77
  • Patlolla A, Collins G, Arinzeh TL. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater 2010;6(1):90-101
  • Tambralli A, Blakeney B, Anderson J, A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 2009;1(2):025001
  • Shih YRV, Chen CN, Tsai SW, Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 2006;24(11):2391-7
  • Liu T, Teng WK, Chan BP, Chew SY. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J Biomed Mater Res A 2010;95(1):276-82
  • Liu XH, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32(3):477-86
  • Wei GB, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater 2008;18(22):3568-82
  • Barrera DA, Zylstra E, Lansbury PT, Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer – poly(lactic acid-Co-lysine). J Am Chem Soc 1993;115(23):11010-11
  • Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly( D,L-lactic-Co-glycolic acid) nanofiber mesh. Tissue Eng 2006;12(2):221-33
  • Ma Z, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 2005;11(7-8):1149-58
  • Casper CL, Yang WD, Farach-Carson MC, Rabolt JF. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules 2007;8(4):1116-23
  • Nitschke M, Schmack G, Janke A, Low pressure plasma treatment of poly(3-hydroxybutyrate): toward tailored polymer surfaces for tissue engineering scaffolds. J Biomed Mater Res 2002;59(4):632-8
  • Liu XH, Won YJ, Ma PX. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Biomaterials 2006;27(21):3980-7
  • Mooney E, Dockery P, Greiser U, Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett 2008;8(8):2137-43
  • Oh S, Brammer KS, Li YS, Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 2009;106(7):2130-5
  • Lee JE, Khang D, Kim YE, Webster TJ. Stem cell impregnated carbon nanofibers/nanotubes for healing damaged neural tissue. Mater Res Soc Symp Proc 2006;915:17-22
  • Nho Y, Kim JY, Khang D, Adsorption of mesenchymal stem cells and cortical neural stem cells on carbon nanotube/polycarbonate urethane. Nanomedicine (Lond) 2010;5(3):409-17
  • Al Kindi AH, Asenjo JF, Ge Y, Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy. Eur J Cardiothorac Surg 2010. [Epub ahead of print]
  • Chen H, Ouyang W, Martoni C, Prakash S. Genipin cross-linked polymeric alginate-chitosan microcapsules for oral delivery: in-vitro analysis. Int J Polym Sci 2009;2009:1-16
  • Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 2008;7(10):816-23
  • Ding HF, Liu R, Li BG, Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules. Biochem Biophys Res Commun 2007;362(4):923-7
  • Lund AW, Bush JA, Plopper GE, Stegemann JP. Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J Biomed Mater Res B Appl Biomater 2008;87(1):213-21
  • Shi XL, Zhang Y, Gu JY, Ding YT. Coencapsulation of hepatocytes with bone marrow mesenchymal stem cells improves hepatocyte-specific functions. Transplantation 2009;88(10):1178-85
  • Zhang H, Zhu SJ, Wang W, Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 2008;15(1):40-8
  • Goren A, Dahan N, Goren E, Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J 2010;24(1):22-31
  • Rokstad AM, Holtan S, Strand B, Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. Cell Transplant 2002;11(4):313-24
  • Orive G, Gascon AR, Hernandez RM, Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci 2003;24(5):207-10
  • Ghosh S, Laha M, Mondal S, In vitro model of mesenchymal condensation during chondrogenic development. Biomaterials 2009;30(33):6530-40
  • Mauney JR, Nguyen T, Gillen K, Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007;28(35):5280-90
  • Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 2007;28(11):1967-77
  • Li WJ, Mauck RL, Cooper JA, Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 2007;40(8):1686-93
  • Nerurkar NL, Baker BM, Chen CY, Engineering of fiber-reinforced tissues with anisotropic biodegradable nanofibrous scaffolds. Conf Proc IEEE Eng Med Biol Soc 2006;1:787-90
  • Binulal NS, Deepthy M, Selvamurugan N, Role of nanofibrous poly(Caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering-response to osteogenic regulators. Tissue Eng A 2010;16:393-404
  • Li WJ, Chiang H, Kuo TF, Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 2009;3(1):1-10
  • Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng A 2009;15(4):913-21
  • Sahoo S, Ang LT, Cho-Hong Goh J, Toh SL. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation 2010;79(2):102-10
  • Hashi CK, Zhu Y, Yang GY, Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007;104(29):11915-20
  • Janjanin S, Li WJ, Morgan MT, Mold-shaped, nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor. J Surg Res 2008;149(1):47-56
  • Shanti RM, Janjanin S, Li WJ, In vitro adipose tissue engineering using an electrospun nanofibrous scaffold. Ann Plast Surg 2008;61(5):566-71
  • Tian H, Bharadwaj S, Liu Y, Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng A 2010;16(5):1769-79
  • Chen F, Tang QL, Zhu YJ, Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomater 2010;6:3013-20
  • Jose MV, Thomas V, Xu Y, Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Macromol Biosci 2010;10(4):433-44
  • Wen F, Magalhaes R, Gouk SS, Vitreous cryopreservation of nanofibrous tissue-engineered constructs generated using mesenchymal stromal cells. Tissue Eng C Methods 2009;15(1):105-14
  • Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 2009;30(28):4996-5003
  • Hong SJ, Yu HS, Noh KT, Novel scaffolds of collagen with bioactive nanofiller for the osteogenic stimulation of bone marrow stromal cells. J Biomater Appl 2010;24(8):733-50
  • Wang F, Li Z, Tamama K, Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 2009;10(9):2609-18
  • Kazemnejad S, Allameh A, Soleimani M, Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 2009;24(2):278-87
  • Finne-Wistrand A, Albertsson AC, Kwon OH, Resorbable scaffolds from three different techniques: electrospun fabrics, salt-leaching porous films, and smooth flat surfaces. Macromol Biosci 2008;8(10):951-9
  • Srouji S, Kizhner T, Suss-Tobi E, 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci Mater Med 2008;19(3):1249-55
  • Mohammadi Y, Soleimani M, Fallahi-Sichani M, Nanofibrous poly(epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif Organs 2007;30(3):204-11
  • McCullen SD, Miller PR, Gittard SD, In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Eng C Methods 2010;16:1095-105
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng A 2009;15(11):3605-19
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008;29(34):4532-9
  • Horne MK, Nisbet DR, Forsythe JS, Parish C. Three dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev 2010;19:843-52
  • Nisbet DR, Yu LM, Zahir T, Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering. J Biomater Sci Polym Ed 2008;19(5):623-34
  • Yang X, Yang F, Walboomers XF, The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J Biomed Mater Res A 2010;93(1):247-57
  • Lam HJ, Patel S, Wang A, In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Eng A 2010;16:2641-8
  • Gauthaman K, Venugopal JR, Yee FC, Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells. J Cell Mol Med 2009;13(9B):3475-84
  • Ghasemi-Mobarakeh L, Morshed M, Karbalaie K, The thickness of electrospun poly (epsilon-caprolactone) nanofibrous scaffolds influences cell proliferation. Int J Artif Organs 2009;32(3):150-8
  • Wu B, Zheng Q, Wu Y, Effect of IKVAV peptide nanofiber on proliferation, adhesion and differentiation into neurocytes of bone marrow stromal cells. J Huazhong Univ Sci Technolog Med Sci 2010;30(2):178-82
  • Webber MJ, Tongers J, Renault MA, Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater 2010;6(1):3-11
  • Lee JY, Choo JE, Choi YS, Osteoblastic differentiation of human bone marrow stromal cells in self-assembled BMP-2 receptor-binding peptide-amphiphiles. Biomaterials 2009;30(21):3532-41
  • Hosseinkhani H, Hosseinkhani M, Kobayashi H. Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers. Biomed Mater 2006;1(1):8-15
  • Jun HW, Paramonov SE, Dong H, Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks. J Biomater Sci Polym Ed 2008;19(5):665-76
  • Wang J, Liu X, Jin X, The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(l-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 2010;6:3856-63
  • Smith LA, Liu X, Hu J, Ma PX. The Enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 2010;31:5526-35
  • Smith LA, Liu X, Hu J, Ma PX. The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells. Biomaterials 2009;30(13):2516-22
  • Smith LA, Liu X, Hu J, Enhancing osteogenic differentiation of mouse embryonic stem cells by nanofibers. Tissue Eng A 2009;15(7):1855-64
  • Xue D, Zheng Q, Zong C, Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res A 2010;94A(1):259-70
  • Huang YX, Ren J, Chen C, Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl 2008;22(5):409-32
  • Hu J, Feng K, Liu X, Ma PX. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 2009;30(28):5061-7
  • Gravel M, Vago R, Tabrizian M. Use of natural coralline biomaterials as reinforcing and gas-forming agent for developing novel hybrid biomatrices: microarchitectural and mechanical studies. Tissue Eng 2006;12(3):589-600

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.