567
Views
75
CrossRef citations to date
0
Altmetric
Reviews

Mesenchymal stem cells at the intersection of cell and gene therapy

, , , , &
Pages 1663-1679 | Published online: 09 Nov 2010

Bibliography

  • Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9(5):641-50
  • Pittenger MF, Mackay AM, Beck SC, Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7
  • Raper SE, Chirmule N, Lee FS, Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80(1-2):148-58
  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348(3):255-6
  • Benabdallah BF, Allard E, Yao S, Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 2010;12(3):394-99
  • Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3(4):393-403
  • Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2009;218(2):237-45
  • Crisan M, Chen CW, Corselli M, Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci 2009;1176:118-23
  • Dezawa M, Kanno H, Hoshino M, Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004;113(12):1701-10
  • Luk JM, Wang PP, Lee CK, Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models. J Immunol Methods 2005;305(1):39-47
  • Tokcaer-Keskin Z, Akar AR, Ayaloglu-Butun F, Timing of induction of cardiomyocyte differentiation for in vitro cultured mesenchymal stem cells: a perspective for emergencies. Can J Physiol Pharmacol 2009;87(2):143-50
  • Dominici M, Le Blanc K, Mueller I, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315-17
  • Granero-Molto F, Weis JA, Miga MI, Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 2009;27(8):1887-98
  • Morigi M, Imberti B, Zoja C, Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004;15(7):1794-804
  • Barbash IM, Chouraqui P, Baron J, Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108(7):863-8
  • Li Y, Chen J, Wang L, Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 2001;56(12):1666-72
  • Francois S, Bensidhoum M, Mouiseddine M, Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006;24(4):1020-9
  • Rochefort GY, Delorme B, Lopez A, Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 2006;24(10):2202-8
  • Granero-Molto F, Weis JA, Longobardi L, Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 2008;8(3):255-68
  • Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 2005;106(6):1901-10
  • Ben-Baruch A. The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev 2006;25(3):357-71
  • Cho HH, Kyoung KM, Seo MJ, Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells Dev 2006;15(6):853-64
  • Cheng Z, Ou L, Zhou X, Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 2008;16(3):571-9
  • Hiasa K, Ishibashi M, Ohtani K, Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004;109(20):2454-61
  • Abbott JD, Huang Y, Liu D, Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004;110(21):3300-5
  • Ip JE, Wu Y, Huang J, Mesenchymal stem cells use integrin beta 1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 2007;18(8):2873-82
  • Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic alpha4 integrin expression. FASEB J 2007;21(14):3917-27
  • Sasaki M, Abe R, Fujita Y, Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008;180(4):2581-7
  • Dwyer RM, Potter-Beirne SM, Harrington KA, Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007;13(17):5020-7
  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98(5):1076-84
  • Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 2007;25(11):2896-902
  • Parekkadan B, van Poll D, Suganuma K, Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2007;2(9):e941
  • Nguyen BK, Maltais S, Perrault LP, Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res 2010;3(5):547-58
  • Wu JY, Scadden DT, Kronenberg HM. Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 2009;24(5):759-64
  • Valtieri M, Sorrentino A. The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol 2008;217(2):296-300
  • Tolar J, Le Blanc K, Keating A, Hitting the right spot with mesenchymal stromal cells (MSCs). Stem Cells 2010;28(8):1446-55
  • Tse WT, Pendleton JD, Beyer WM, Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003;75(3):389-97
  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008;8(9):726-36
  • Krampera M, Glennie S, Dyson J, Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101(9):3722-9
  • Le Blanc K, Tammik L, Sundberg B, Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57(1):11-20
  • Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007;110(10):3499-506
  • Meisel R, Zibert A, Laryea M, Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004;103(12):4619-21
  • Zhang W, Ge W, Li C, Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004;13(3):263-71
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105(4):1815-22
  • Jiang XX, Zhang Y, Liu B, Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005;105(10):4120-6
  • Beyth S, Borovsky Z, Mevorach D, Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005;105(5):2214-19
  • Corcione A, Benvenuto F, Ferretti E, Human mesenchymal stem cells modulate B-cell functions. Blood 2006;107(1):367-72
  • Rasmusson I, Le Blanc K, Sundberg B, Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol 2007;65(4):336-43
  • Spaggiari GM, Capobianco A, Becchetti S, Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006;107(4):1484-90
  • Sotiropoulou PA, Perez SA, Gritzapis AD, Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006;24(1):74-85
  • Rojas M, Xu J, Woods CR, Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005;33(2):145-52
  • Iyer SS, Co C, Rojas M. Mesenchymal stem cells and inflammatory lung diseases. Panminerva Med 2009;51(1):5-16
  • Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996;10(13):1580-94
  • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22(4):233-41
  • Oreffo RO. Growth factors for skeletal reconstruction and fracture repair. Curr Opin Investig Drugs 2004;5(4):419-23
  • McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop 2007;31(6):729-34
  • Govender S, Csimma C, Genant HK, Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002;84-A(12):2123-34
  • Tsuji K, Bandyopadhyay A, Harfe BD, BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006;38(12):1424-9
  • Lieberman JR, Le LQ, Wu L, Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 1998;16(3):330-9
  • Aslan H, Zilberman Y, Arbeli V, Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng 2006;12(4):877-89
  • Sugiyama O, An DS, Kung SP, Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 2005;11(3):390-8
  • Turgeman G, Pittman DD, Muller R, Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 2001;3(3):240-51
  • Zachos T, Diggs A, Weisbrode S, Mesenchymal stem cell-mediated gene delivery of bone morphogenetic protein-2 in an articular fracture model. Mol Ther 2007;15(8):1543-50
  • Chang SC, Wei FC, Chuang H, Ex vivo gene therapy in autologous critical-size craniofacial bone regeneration. Plast Reconstr Surg 2003;112(7):1841-50
  • Chang SC, Chuang HL, Chen YR, Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther 2003;10(24):2013-19
  • Sheyn D, Ruthemann M, Mizrahi O, Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion. Tissue Eng Part A: [Epub ahead of print, doi: 10.1089/ten.tea.2009.0786]
  • Hasharoni A, Zilberman Y, Turgeman G, Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine 2005;3(1):47-52
  • Miyazaki M, Sugiyama O, Tow B, The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Spinal Disord Tech 2008;21(5):372-9
  • Riew KD, Wright NM, Cheng S, Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int 1998;63(4):357-60
  • Kumar S, Mahendra G, Nagy TR, Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum Gene Ther 2004;15(12):1197-206
  • Zhang XS, Linkhart TA, Chen ST, Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med 2004;6(1):4-15
  • Breitbart AS, Grande DA, Mason JM, Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg 1999;42(5):488-95
  • Krebsbach PH, Gu K, Franceschi RT, Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther 2000;11(8):1201-10
  • Zheng H, Guo Z, Ma Q, Cbfa1/osf2 transduced bone marrow stromal cells facilitate bone formation in vitro and in vivo. Calcif Tissue Int 2004;74(2):194-203
  • Zhao Z, Wang Z, Ge C, Healing cranial defects with AdRunx2-transduced marrow stromal cells. J Dent Res 2007;86(12):1207-11
  • Edwards PC, Ruggiero S, Fantasia J, Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 2005;12(1):75-86
  • Guo X, Zheng Q, Kulbatski I, Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Biomed Mater 2006;1(3):93-9
  • Terkeltaub RA, Johnson K, Rohnow D, Bone morphogenetic proteins and bFGF exert opposing regulatory effects on PTHrP expression and inorganic pyrophosphate elaboration in immortalized murine endochondral hypertrophic chondrocytes (MCT cells). J Bone Miner Res 1998;13(6):931-41
  • Milat F, Ng KW. Is Wnt signalling the final common pathway leading to bone formation? Mol Cell Endocrinol 2009;310(1-2):52-62
  • Chang J, Sonoyama W, Wang Z, Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 2007;282(42):30938-48
  • Gronthos S, Chen S, Wang CY, Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res 2003;18(4):716-22
  • Pola E, Gao W, Zhou Y, Efficient bone formation by gene transfer of human LIM mineralization protein-3. Gene Ther 2004;11(8):683-93
  • Viggeswarapu M, Boden SD, Liu Y, Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am 2001;83-A(3):364-76
  • Granero-Molto F, Myers TJ, Weis JA, Mesenchymal stem cells expressing IGF-I improve fracture repair: the seed and the soil for tissue regeneration. 92nd Annual Meeting of The Endocrine Society; San Diego, 2010. Endocrine Reviews, Supplement 1, 2010;31(3):S1037
  • Phimphilai M, Zhao Z, Boules H, BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res 2006;21(4):637-46
  • Yang S, Wei D, Wang D, In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res 2003;18(4):705-15
  • Peng H, Wright V, Usas A, Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 2002;110(6):751-9
  • Kumar S, Wan C, Ramaswamy G, Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 2010;18(5):1026-34
  • Lee JY, Musgrave D, Pelinkovic D, Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am 2001;83-A(7):1032-9
  • Peng H, Usas A, Gearhart B, Development of a self-inactivating tet-on retroviral vector expressing bone morphogenetic protein 4 to achieve regulated bone formation. Mol Ther 2004;9(6):885-94
  • Peng H, Usas A, Olshanski A, VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005;20(11):2017-27
  • Gersbach CA, Le Doux JM, Guldberg RE, Inducible regulation of Runx2-stimulated osteogenesis. Gene Ther 2006;13(11):873-82
  • Goodrich LR, Hidaka C, Robbins PD, Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br 2007;89(5):672-85
  • Hidaka C, Quitoriano M, Warren RF, Enhanced matrix synthesis and in vitro formation of cartilage-like tissue by genetically modified chondrocytes expressing BMP-7. J Orthop Res 2001;19(5):751-8
  • Yokoo N, Saito T, Uesugi M, Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector. Arthritis Rheum 2005;52(1):164-70
  • Cucchiarini M, Madry H, Ma C, Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 2005;12(2):229-38
  • Longobardi L, O'Rear L, Aakula S, Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 2006;21(4):626-36
  • Steinert AF, Palmer GD, Pilapil C, Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng Part A 2009;15(5):1127-39
  • Guo CA, Liu XG, Huo JZ, Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-beta 1-transfected mesenchymal stem cells grown on chitosan scaffolds. J Biosci Bioeng 2007;103(6):547-56
  • Pagnotto MR, Wang Z, Karpie JC, Adeno-associated viral gene transfer of transforming growth factor-beta 1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 2007;14(10):804-13
  • Xia W, Jin YQ, Kretlow JD, Adenoviral transduction of hTGF-beta 1 enhances the chondrogenesis of bone marrow derived stromal cells. Biotechnol Lett 2009;31(5):639-46
  • Park J, Gelse K, Frank S, Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 2006;8(1):112-25
  • Katayama R, Wakitani S, Tsumaki N, Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford) 2004;43(8):980-5
  • Tsuchiya H, Kitoh H, Sugiura F, Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2003;301(2):338-43
  • Hoffmann A, Czichos S, Kaps C, The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. J Cell Sci 2002;115(Pt 4):769-81
  • Urs S, Venkatesh D, Tang Y, Sprouty1 is a critical regulatory switch of mesenchymal stem cell lineage allocation. FASEB J 2010;24(9):3264-73
  • Pacini S, Spinabella S, Trombi L, Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng 2007;13(12):2949-55
  • Hoffmann A, Pelled G, Turgeman G, Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 2006;116(4):940-52
  • Schnabel LV, Lynch ME, van der Meulen MC, Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 2009;27(10):1392-8
  • Gulotta LV, Kovacevic D, Montgomery S, Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med 2010;38(7):1429-37
  • Wang QW, Chen ZL, Piao YJ. Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci Bioeng 2005;100(4):418-22
  • Majewski M, Betz O, Ochsner PE, Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther 2008;15(16):1139-46
  • Haddad-Weber M, Prager P, Kunz M, BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy 2010;12(4):505-13
  • Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc 2007;15(10):1219-27
  • Whyte MP, Kurtzberg J, McAlister WH, Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 2003;18(4):624-36
  • Cahill RA, Jones OY, Klemperer M, Replacement of recipient stromal/mesenchymal cells after bone marrow transplantation using bone fragments and cultured osteoblast-like cells. Biol Blood Marrow Transplant 2004;10(10):709-17
  • Cahill RA, Wenkert D, Perlman SA, Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 2007;92(8):2923-30
  • Horwitz EM, Gordon PL, Koo WK, Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002;99(13):8932-7
  • Le Blanc K, Gotherstrom C, Ringden O, Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005;79(11):1607-14
  • Chamberlain JR, Schwarze U, Wang PR, Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 2004;303(5661):1198-201
  • Song H, Song BW, Cha MJ, Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther 2010;10(3):309-19
  • Schachinger V, Erbs S, Elsasser A, Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355(12):1210-21
  • Huang W, Zhang D, Millard RW, Gene manipulated peritoneal cell patch repairs infarcted myocardium. J Mol Cell Cardiol 2010;48(4):702-12
  • Zhang D, Fan GC, Zhou X, Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol 2008;44(2):281-92
  • Huang J, Zhang Z, Guo J, Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 2010;106(11):1753-62
  • Tang J, Wang J, Zheng F, Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem 2010;339(1-2):107-18
  • Liu XH, Bai CG, Xu ZY, Therapeutic potential of angiogenin modified mesenchymal stem cells: angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvasc Res 2008;76(1):23-30
  • Tang YL, Tang Y, Zhang YC, Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 2005;46(7):1339-50
  • Tsubokawa T, Yagi K, Nakanishi C, Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. Am J Physiol Heart Circ Physiol 2010;298(5):H1320-29
  • Kelly ML, Wang M, Crisostomo PR, TNF receptor 2, not TNF receptor 1, enhances mesenchymal stem cell-mediated cardiac protection following acute ischemia. Shock 2010;33(6):602-7
  • Bao C, Guo J, Zheng M, Enhancement of the survival of engrafted mesenchymal stem cells in the ischemic heart by TNFR gene transfection. Biochem Cell Biol 2010;88(4):629-34
  • Jo J, Nagaya N, Miyahara Y, Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng 2007;13(2):313-22
  • Li W, Ma N, Ong LL, Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2007;25(8):2118-27
  • Copland IB, Jolicoeur EM, Gillis MA, Coupling erythropoietin secretion to mesenchymal stromal cells enhances their regenerative properties. Cardiovasc Res 2008;79(3):405-15
  • Fan L, Lin C, Zhuo S, Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. Eur J Heart Fail 2009;11(11):1023-30
  • Haider H, Jiang S, Idris NM, IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 2008;103(11):1300-8
  • Pons J, Huang Y, Takagawa J, Combining angiogenic gene and stem cell therapies for myocardial infarction. J Gene Med 2009;11(9):743-53
  • Deuse T, Peter C, Fedak PW, Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 2009;120(11 Suppl):S247-54
  • Noiseux N, Gnecchi M, Lopez-Ilasaca M, Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006;14(6):840-50
  • Gnecchi M, He H, Melo LG, Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 2009;27(4):971-9
  • Mirotsou M, Zhang Z, Deb A, Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA 2007;104(5):1643-8
  • Shujia J, Haider HK, Idris NM, Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 2008;77(3):525-33
  • Sun L, Cui M, Wang Z, Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem Biophys Res Commun 2007;357(3):779-84
  • Song SW, Chang W, Song BW, Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells 2009;27(6):1358-65
  • Yang F, Cho SW, Son SM, Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci USA 2010;107(8):3317-22
  • Piao W, Wang H, Inoue M, Transplantation of sendai viral angiopoietin-1-modified mesenchymal stem cells for ischemic limb disease. Angiogenesis 2010;13(3):203-10
  • Xu J, Qu J, Cao L, Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 2008;214(4):472-81
  • Manning E, Pham S, Li S, Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy approach to prevent lung ischemia-reperfusion injury. Hum Gene Ther 2010;21(6):713-27
  • Takemiya K, Kai H, Yasukawa H, Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 2010;105(3):409-17
  • Kanki-Horimoto S, Horimoto H, Mieno S, Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 2006;114(1 Suppl):I181-5
  • Togel F, Hu Z, Weiss K, Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005;289(1):F31-42
  • Hagiwara M, Shen B, Chao L, Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Hum Gene Ther 2008;19(8):807-19
  • Grisendi G, Bussolari R, Cafarelli L, Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010;70(9):3718-29
  • Loebinger MR, Eddaoudi A, Davies D, Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009;69(10):4134-42
  • Menon LG, Kelly K, Yang HW, Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 2009;27(9):2320-30
  • Sasportas LS, Kasmieh R, Wakimoto H, Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 2009;106(12):4822-7
  • Kim SM, Lim JY, Park SI, Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 2008;68(23):9614-23
  • Xiang J, Tang J, Song C, Mesenchymal stem cells as a gene therapy carrier for treatment of fibrosarcoma. Cytotherapy 2009;11(5):516-26
  • Komarova S, Kawakami Y, Stoff-Khalili MA, Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006;5(3):755-66
  • Hakkarainen T, Sarkioja M, Lehenkari P, Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors. Hum Gene Ther 2007;18(7):627-41
  • Dembinski JL, Spaeth EL, Fueyo J, Reduction of nontarget infection and systemic toxicity by targeted delivery of conditionally replicating viruses transported in mesenchymal stem cells. Cancer Gene Ther 2010;17(4):289-97
  • Sonabend AM, Ulasov IV, Tyler MA, Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008;26(3):831-41
  • Yong RL, Shinojima N, Fueyo J, Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus delta 24-RGD to human gliomas. Cancer Res 2009;69(23):8932-40
  • Kucerova L, Matuskova M, Pastorakova A, Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 2008;10(10):1071-82
  • Kucerova L, Altanerova V, Matuskova M, Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007;67(13):6304-13
  • Cavarretta IT, Altanerova V, Matuskova M, Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2010;18(1):223-31
  • Uchibori R, Okada T, Ito T, Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med 2009;11(5):373-81
  • Zischek C, Niess H, Ischenko I, Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009;250(5):747-53
  • Xu G, Jiang XD, Xu Y, Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol Int 2009;33(4):466-74
  • Nakamura K, Ito Y, Kawano Y, Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004;11(14):1155-64
  • Gunnarsson S, Bexell D, Svensson A, Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFN gamma-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol 2010;218(1-2):140-44
  • Chen X, Lin X, Zhao J, A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 2008;16(4):749-56
  • Gao P, Ding Q, Wu Z, Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 2010;290(2):157-66
  • Hong X, Miller C, Savant-Bhonsale S, Antitumor treatment using interleukin-12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 2009;64(6):1139-46; discussion 1146-47
  • Elzaouk L, Moelling K, Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006;15(11):865-74
  • Kidd S, Caldwell L, Dietrich M, Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 2010;12(5):615-25
  • Sato H, Kuwashima N, Sakaida T, Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther 2005;12(9):757-68
  • Ren C, Kumar S, Chanda D, Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 2008;15(21):1446-53
  • Xin H, Kanehira M, Mizuguchi H, Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells 2007;25(7):1618-26
  • Studeny M, Marini FC, Champlin RE, Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62(13):3603-8
  • Fritz V, Noel D, Bouquet C, Antitumoral activity and osteogenic potential of mesenchymal stem cells expressing the urokinase-type plasminogen antagonist amino-terminal fragment in a murine model of osteolytic tumor. Stem Cells 2008;26(11):2981-90
  • Kanehira M, Xin H, Hoshino K, Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007;14(11):894-903
  • Kyriakou CA, Yong KL, Benjamin R, Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt's lymphoma in a murine model. J Gene Med 2006;8(3):253-64
  • Bexell D, Scheding S, Bengzon J. Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 2010;18(6):1067-75
  • Loebinger MR, Janes SM. Stem cells as vectors for antitumour therapy. Thorax 2010;65(4):362-9
  • Djouad F, Plence P, Bony C, Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102(10):3837-44
  • Spaeth EL, Dembinski JL, Sasser AK, Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009;4(4):e4992
  • Karnoub AE, Dash AB, Vo AP, Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449(7162):557-63
  • Rubio D, Garcia-Castro J, Martin MC, Spontaneous human adult stem cell transformation. Cancer Res 2005;65(8):3035-9
  • Bernardo ME, Zaffaroni N, Novara F, Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007;67(19):9142-9
  • Kurozumi K, Nakamura K, Tamiya T, BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004;9(2):189-97
  • Ikeda N, Nonoguchi N, Zhao MZ, Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke 2005;36(12):2725-30
  • Zhao MZ, Nonoguchi N, Ikeda N, Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 2006;26(9):1176-88
  • Glavaski-Joksimovic A, Virag T, Chang QA, Reversal of dopaminergic degeneration in a parkinsonian rat following micrografting of human bone marrow-derived neural progenitors. Cell Transplant 2009;18(7):801-14
  • Ronsyn MW, Daans J, Spaepen G, Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnol 2007;7:90
  • Karnieli O, Izhar-Prato Y, Bulvik S, Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007;25(11):2837-44
  • Liu H, Honmou O, Harada K, Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 2006;129(Pt 10):2734-45
  • Liu AM, Lu G, Tsang KS, Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery 2010;67(2):357-65; discussion 365-66
  • ClinicalTrials.gov home page. Available at www.clinicaltrials.gov [Last accessed August 2010]
  • Madeira C, Mendes RD, Ribeiro SC, Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. J Biomed Biotechnol 2010 [Epub ahead of print, doi: 10.1155/2010/735349]
  • Honczarenko M, Le Y, Swierkowski M, Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006;24(4):1030-41
  • Son BR, Marquez-Curtis LA, Kucia M, Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006;24(5):1254-64
  • Tolar J, Nauta AJ, Osborn MJ, Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007;25(2):371-9
  • Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 2010;222(2):268-77
  • De Miguel MP, Arnalich Montiel F, Lopez Iglesias P, Epiblast-derived stem cells in embryonic and adult tissues. Int J Dev Biol 2009;53(8-10):1529-40
  • Kucia M, Reca R, Campbell FR, A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006;20(5):857-69

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.