327
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Treatment of diabetes with glucagon-like peptide-1 gene therapy

&
Pages 1681-1692 | Published online: 28 Oct 2010

Bibliography

  • Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007;87(4):1409-39
  • Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev 1999;20(6):876-913
  • Drucker DJ. The biology of incretin hormones. Cell Metab 2006;3(3):153-65
  • Brubaker PL. Minireview: update on incretin biology: focus on glucagon-like peptide-1. Endocrinology 2010;151(5):1984-9
  • Rouille Y, Kantengwa S, Irminger JC, Halban PA. Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon-like peptide 1. J Biol Chem 1997;272(52):32810-16
  • Dube PE, Brubaker PL. Nutrient, neural and endocrine control of glucagon-like peptide secretion. Horm Metab Res 2004;36(11-12):755-60
  • Layer P, Holst JJ, Grandt D, Goebell H. Ileal release of glucagon-like peptide-1 (GLP-1). Association with inhibition of gastric acid secretion in humans. Dig Dis Sci 1995;40(5):1074-82
  • Reimann F, Habib AM, Tolhurst G, Glucose sensing in L cells: a primary cell study. Cell Metab 2008;8(6):532-9
  • Parker HE, Reimann F, Gribble FM. Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Rev Mol Med 2010;12:e1
  • Balks HJ, Holst JJ, von zur Muhlen A, Brabant G. Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J Clin Endocrinol Metab 1997;82(3):786-90
  • Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol 2003;81(11):1005-12
  • Anini Y, Brubaker PL. Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 2003;144(7):3244-50
  • Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 1987;79(2):616-19
  • Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987;2(8571):1300-4
  • Holst JJ, Orskov C, Nielsen OV, Schwartz TW. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 1987;211(2):169-74
  • Holz GGt, Kuhtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993;361(6410):362-5
  • MacDonald PE, El-Kholy W, Riedel MJ, The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002;51(Suppl 3):S434-42
  • Weir GC, Mojsov S, Hendrick GK, Habener JF. Glucagonlike peptide I (7-37) actions on endocrine pancreas. Diabetes 1989;38(3):338-42
  • Wang X, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology 2001;142(5):1820-7
  • Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999;42(7):856-64
  • Stoffers DA, Kieffer TJ, Hussain MA, Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000;49(5):741-8
  • Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000;141(12):4600-5
  • Lawrence MC, Bhatt HS, Easom RA. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1. Diabetes 2002;51(3):691-8
  • Li Y, Cao X, Li LX, beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 2005;54(2):482-91
  • Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 1988;123(4):2009-13
  • Kawai K, Suzuki S, Ohashi S, Comparison of the effects of glucagon-like peptide-1-(1-37) and -(7-37) and glucagon on islet hormone release from isolated perfused canine and rat pancreases. Endocrinology 1989;124(4):1768-73
  • Komatsu R, Matsuyama T, Namba M, Glucagonostatic and insulinotropic action of glucagonlike peptide I-(7-36)-amide. Diabetes 1989;38(7):902-5
  • Creutzfeldt WO, Kleine N, Willms B, Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 1996;19(6):580-6
  • Heller RS, Kieffer TJ, Habener JF. Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas. Diabetes 1997;46(5):785-91
  • Schmid R, Schusdziarra V, Aulehner R, Comparison of GLP-1 (7-36amide) and GIP on release of somatostatin-like immunoreactivity and insulin from the isolated rat pancreas. Z Gastroenterol 1990;28(6):280-4
  • Prigeon RL, Quddusi S, Paty B, D'Alessio DA. Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol Endocrinol Metab 2003;285(4):E701-7
  • Sandhu H, Wiesenthal SR, MacDonald PE, Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs. Diabetes 1999;48(5):1045-53
  • Egan JM, Meneilly GS, Habener JF, Elahi D. Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab 2002;87(8):3768-73
  • Wettergren A, Schjoldager B, Mortensen PE, Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993;38(4):665-73
  • Nauck MA, Niedereichholz U, Ettler R, Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997;273(5 Pt 1):E981-8
  • Meier JJ, Gallwitz B, Salmen S, Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab 2003;88(6):2719-25
  • Little TJ, Pilichiewicz AN, Russo A, Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J Clin Endocrinol Metab 2006;91(5):1916-23
  • Turton MD, O'shea D, Gunn I, A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379(6560):69-72
  • Gutzwiller JP, Drewe J, Goke B, Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999;276(5 Pt 2):R1541-4
  • Verdich C, Flint A, Gutzwiller JP, A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001;86(9):4382-9
  • Gutzwiller JP, Goke B, Drewe J, Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 1999;44(1):81-6
  • Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 2009;150(4):1680-7
  • Gutniak M, Orskov C, Holst JJ, Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992;326(20):1316-22
  • Nauck MA, Heimesaat MM, Orskov C, Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993;91(1):301-7
  • Nauck MA, Kleine N, Orskov C, Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993;36(8):741-4
  • Rachman J, Gribble FM, Barrow BA, Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7-36) amide in patients with NIDDM. Diabetes 1996;45(11):1524-30
  • Rachman J, Barrow BA, Levy JC, Turner RC. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 1997;40(2):205-11
  • Quddusi S, Vahl TP, Hanson K, Differential effects of acute and extended infusions of glucagon-like peptide-1 on first- and second-phase insulin secretion in diabetic and nondiabetic humans. Diabetes Care 2003;26(3):791-8
  • Todd JF, Wilding JP, Edwards CM, Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1997;27(6):533-6
  • Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359(9309):824-30
  • Meneilly GS, Greig N, Tildesley H, Effects of 3 months of continuous subcutaneous administration of glucagon-like peptide 1 in elderly patients with type 2 diabetes. Diabetes Care 2003;26(10):2835-41
  • Elahi D, McAloon-Dyke M, Fukagawa NK, The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul Pept 1994;51(1):63-74
  • Lerche S, Soendergaard L, Rungby J, No increased risk of hypoglycaemic episodes during 48 h of subcutaneous glucagon-like-peptide-1 administration in fasting healthy subjects. Clin Endocrinol 2009;71(4):500-6
  • Vilsboll T, Krarup T, Madsbad S, Holst JJ. No reactive hypoglycaemia in type 2 diabetic patients after subcutaneous administration of GLP-1 and intravenous glucose. Diabet Med 2001;18(2):144-9
  • Knop FK, Vilsboll T, Larsen S, No hypoglycemia after subcutaneous administration of glucagon-like peptide-1 in lean type 2 diabetic patients and in patients with diabetes secondary to chronic pancreatitis. Diabetes Care 2003;26(9):2581-7
  • Meier JJ, Nauck MA, Kranz D, Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 2004;53(3):654-62
  • Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995;136(8):3585-96
  • Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;214(3):829-35
  • Deacon CF, Pridal L, Klarskov L, Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol 1996;271(3 Pt 1):E458-64
  • Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995;80(3):952-7
  • Goke R, Fehmann HC, Linn T, Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993;268(26):19650-5
  • Thorens B, Porret A, Buhler L, Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 1993;42(11):1678-82
  • Simonsen L, Holst JJ, Deacon CF. Exendin-4, but not glucagon-like peptide-1, is cleared exclusively by glomerular filtration in anaesthetised pigs. Diabetologia 2006;49(4):706-12
  • Thum A, Hupe-Sodmann K, Goke R, Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like peptide-1 analogs, exendins-3 and -4. Exp Clin Endocrinol Diabetes 2002;110(3):113-18
  • Parkes D, Jodka C, Smith P, Pharmacokinetic actions of exendin-4 in the rat: comparison with glucagon-like peptide-1. Drug Dev Res 2001;53(4):260-7
  • DeFronzo RA, Triplitt C, Qu Y, Effects of exenatide plus rosiglitazone on beta-cell function and insulin sensitivity in subjects with type 2 diabetes on metformin. Diabetes Care 2010;33(5):951-7
  • Buse JB, Henry RR, Han J, Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004;27(11):2628-35
  • DeFronzo RA, Ratner RE, Han J, Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005;28(5):1092-100
  • Zinman B, Hoogwerf BJ, Duran Garcia S, The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2007;146(7):477-85
  • Heine RJ, Van Gaal LF, Johns D, Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005;143(8):559-69
  • Bunck MC, Diamant M, Corner A, One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 2009;32(5):762-8
  • Fehse F, Trautmann M, Holst JJ, Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2005;90(11):5991-7
  • Kolterman OG, Buse JB, Fineman MS, Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2003;88(7):3082-9
  • Fineman MS, Bicsak TA, Shen LZ, Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003;26(8):2370-7
  • Nauck MA, Hompesch M, Filipczak R, Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 2006;114(8):417-23
  • Vilsboll T, Zdravkovic M, Le-Thi T, Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 2007;30(6):1608-10
  • Buse JB, Rosenstock J, Sesti G, Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009;374(9683):39-47
  • Zinman B, Gerich J, Buse JB, Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009;32(7):1224-30
  • Elbrond B, Jakobsen G, Larsen S, Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 2002;25(8):1398-404
  • Agerso H, Jensen LB, Elbrond B, The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002;45(2):195-202
  • Juhl CB, Hollingdal M, Sturis J, Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes 2002;51(2):424-9
  • Madsbad S, Schmitz O, Ranstam J, Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004;27(6):1335-42
  • Degn KB, Juhl CB, Sturis J, One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004;53(5):1187-94
  • Harder H, Nielsen L, Tu DT, Astrup A. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care 2004;27(8):1915-21
  • Malm-Erjefalt M, Bjornsdottir I, Vanggaard J, Metabolism and excretion of the once daily human GLP-1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase. Drug Metab Dispos 2010;38(11):1944-53
  • Parks M, Rosebraugh C. Weighing risks and benefits of liraglutide – the FDA's review of a new antidiabetic therapy. N Engl J Med 2010;362(9):774-7
  • Flatt PR, Bailey CJ, Green BD. Recent advances in antidiabetic drug therapies targeting the enteroinsular axis. Curr Drug Metab 2009;10(2):125-37
  • Drucker DJ, Buse JB, Taylor K, Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008;372(9645):1240-50
  • Buse JB, Drucker DJ, Taylor KL, DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care 2010;33(6):1255-61
  • Iwamoto K, Nasu R, Yamamura A, Safety, tolerability, pharmacokinetics, and pharmacodynamics of exenatide once weekly in Japanese patients with type 2 diabetes. Endocr J 2009;56(8):951-62
  • Kim D, MacConell L, Zhuang D, Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007;30(6):1487-93
  • Sebokova E, Christ AD, Wang H, Taspoglutide, an analog of human glucagon-like Peptide-1 with enhanced stability and in vivo potency. Endocrinology 2010;151(6):2474-82
  • Ratner R, Nauck M, Kapitza C, Safety and tolerability of high doses of taspoglutide, a once-weekly human GLP-1 analogue, in diabetic patients treated with metformin: a randomized double-blind placebo-controlled study. Diabet Med 2010;27(5):556-62
  • Nauck MA, Ratner RE, Kapitza C, Treatment with the human once-weekly glucagon-like peptide-1 analog taspoglutide in combination with metformin improves glycemic control and lowers body weight in patients with type 2 diabetes inadequately controlled with metformin alone: a double-blind placebo-controlled study. Diabetes Care 2009;32(7):1237-43
  • Tomas E, Stanojevic V, Habener JF. GLP-1 (9-36) amide metabolite suppression of glucose production in isolated mouse hepatocytes. Horm Metab Res 2010;42(9):657-62
  • Tomas E, Habener JF. Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol Metab 2010;21(2):59-67
  • Ban K, Kim KH, Cho CK, Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology 2010;151(4):1520-31
  • Ban K, Noyan-Ashraf MH, Hoefer J, Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008;117(18):2340-50
  • Nikolaidis LA, Elahi D, Shen YT, Shannon RP. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2005;289(6):H2401-8
  • Meier JJ, Gethmann A, Nauck MA, The glucagon-like peptide-1 metabolite GLP-1-(9-36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans. Am J Physiol Endocrinol Metab 2006;290(6):E1118-23
  • Deacon CF, Nauck MA, Toft-Nielsen M, Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995;44(9):1126-31
  • Hui H, Yu R, Bousquet C, Perfetti R. Transfection of pancreatic-derived beta-cells with a minigene encoding for human glucagon-like peptide-1 regulates glucose-dependent insulin synthesis and secretion. Endocrinology 2002;143(9):3529-39
  • Oh S, Lee M, Ko KS, GLP-1 gene delivery for the treatment of type 2 diabetes. Mol Ther 2003;7(4):478-83
  • Choi S, Oh S, Lee M, Kim SW. Glucagon-like peptide-1 plasmid construction and delivery for the treatment of type 2 diabetes. Mol Ther 2005;12(5):885-91
  • Ah Kim H, Lee S, Park JH, Enhanced protection of Ins-1 beta cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. J Drug Target 2009;17(3):242-8
  • Parsons GB, Souza DW, Wu H, Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes. Gene Ther 2007;14(1):38-48
  • Lee YS, Shin S, Shigihara T, Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 2007;56(6):1671-9
  • Lee Y, Kwon MK, Kang ES, Adenoviral vector-mediated glucagon-like peptide 1 gene therapy improves glucose homeostasis in Zucker diabetic fatty rats. J Gene Med 2008;10(3):260-8
  • Kumar M, Hunag Y, Glinka Y, Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Ther 2007;14(2):162-72
  • Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998;16(9):867-70
  • Prud'homme GJ, Draghia-Akli R, Wang Q. Plasmid-based gene therapy of diabetes mellitus. Gene Ther 2007;14(7):553-64
  • Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet 2009;67:29-60
  • Vandenberghe LH, Wilson JM, Gao G. Tailoring the AAV vector capsid for gene therapy. Gene Ther 2009;16(3):311-19
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008;21(4):583-93
  • Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther 2003;3(6):545-65
  • Calcedo R, Vandenberghe LH, Gao G, Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009;199(3):381-90
  • McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004;38:819-45
  • Schnepp BC, Jensen RL, Chen CL, Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 2005;79(23):14793-803
  • Samulski RJ, Zhu X, Xiao X, Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991;10(12):3941-50
  • Kotin RM, Siniscalco M, Samulski RJ, Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990;87(6):2211-15
  • Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther 2009;11(4):442-7
  • Gaddy DF, Riedel MJ, Pejawar-Gaddy S, In vivo expression of HGF/NK1 and GLP1 from dsAAV vectors enhances pancreatic beta cell proliferation and improves pathology in the db/db mouse model of diabetes. Diabetes 2010
  • Choi SH, Lee HC. Long-term, antidiabetogenic effects of GLP-1 gene therapy using a double-stranded, adeno-associated viral vector. Gene Ther 2010
  • Wang Z, Zhu T, Rehman KK, Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 2006;55(4):875-84
  • Samson SL, Gonzalez EV, Yechoor V, Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-induced obesity mouse model. Mol Ther 2008;16(11):1805-12
  • Oka K, Chan L. Helper-dependent adenoviral vectors. Curr Protoc Mol Biol 2005;16.24.1-16.24.23
  • Nauck MA, Duran S, Kim D, A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia 2007;50(2):259-67
  • Liu MJ, Shin S, Li N, Prolonged remission of diabetes by regeneration of beta cells in diabetic mice treated with recombinant adenoviral vector expressing glucagon-like peptide-1. Mol Ther 2007;15(1):86-93
  • Riedel MJ, Lee CW, Kieffer TJ. Engineered glucagon-like peptide-1-producing hepatocytes lower plasma glucose levels in mice. Am J Physiol Endocrinol Metab 2009;296(4):E936-44
  • Wideman RD, Yu IL, Webber TD, Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1). Proc Natl Acad Sci USA 2006;103(36):13468-73
  • Wideman RD, Covey SD, Webb GC, A switch from prohormone convertase (PC)-2 to PC1/3 expression in transplanted alpha-cells is accompanied by differential processing of proglucagon and improved glucose homeostasis in mice. Diabetes 2007;56(11):2744-52
  • Wideman RD, Gray SL, Covey SD, Transplantation of PC1/3-Expressing alpha-cells improves glucose handling and cold tolerance in leptin-resistant mice. Mol Ther 2009;17(1):191-8
  • Dupre J, Behme MT, Hramiak IM, Glucagon-like peptide I reduces postprandial glycemic excursions in IDDM. Diabetes 1995;44(6):626-30
  • Dupre J. Glycaemic effects of incretins in type 1 diabetes mellitus: a concise review, with emphasis on studies in humans. Regul Pept 2005;128(2):149-57
  • Raman VS, Mason KJ, Rodriguez LM, The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care 2010;33(6):1294-6
  • Brubaker PL, Drucker DJ. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004;145(6):2653-9
  • Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003;17(2):161-71
  • Farilla L, Bulotta A, Hirshberg B, Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003;144(12):5149-58
  • Li Y, Hansotia T, Yusta B, Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003;278(1):471-8
  • Yusta B, Baggio LL, Estall JL, GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 2006;4(5):391-406
  • Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008;283(13):8723-35
  • Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival. Diabetes Metab 2008;34(Suppl 2):S73-7
  • Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004;53(7):1700-5
  • Sherry NA, Chen W, Kushner JA, Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 2007;148(11):5136-44
  • Perez-Arana G, Blandino-Rosano M, Prada-Oliveira A, Decrease in {beta}-cell proliferation precedes apoptosis during diabetes development in bio-breeding/worcester rat: beneficial role of Exendin-4. Endocrinology 2010;151(6):2538-46
  • Zhang J, Tokui Y, Yamagata K, Continuous stimulation of human glucagon-like peptide-1 (7-36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia 2007;50(9):1900-9
  • Hadjiyanni I, Baggio LL, Poussier P, Drucker DJ. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology 2008;149(3):1338-49
  • Suarez-Pinzon WL, Power RF, Yan Y, Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 2008;57(12):3281-8
  • Hadjiyanni I, Siminovitch KA, Danska JS, Drucker DJ. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 2010;53(4):730-40
  • Lavine JA, Raess PW, Davis DB, Contamination with E1A-positive wild-type adenovirus accounts for species-specific stimulation of islet cell proliferation by CCK: a cautionary note. Mol Endocrinol 2010;24(2):464-7
  • Soltani N, Kumar M, Glinka Y, In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes. Gene Ther 2007;14(12):981-8
  • Riedel MJ, Gaddy DF, Asadi A, DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. Gene Ther 2010;17(2):171-80
  • Nie Y, Nakashima M, Brubaker PL, Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J Clin Invest 2000;105(7):955-65
  • Cheung AT, Dayanandan B, Lewis JT, Glucose-dependent insulin release from genetically engineered K cells. Science 2000;290(5498):1959-62
  • Fujita Y, Cheung AT, Kieffer TJ. Harnessing the gut to treat diabetes. Pediatr Diabetes 2004;5(Suppl 2):57-69

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.