756
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Tits and bits of HIV Tat protein

, , , &
Pages 269-283 | Published online: 05 Jan 2011

Bibliography

  • Barre-Sinoussi F, Chermann JC, Rey F, Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983;220(4599):868-71
  • AIDS epidemic update. Geneva, Switzerland: UNAIDS 2009. Available from: http://data.unaids.org/pub/Report/2009/jc1700_epi_update_2009_en.pdf [last accessed 16 December 2010]
  • Hemelaar J, Gouws E, Ghys PD, Osmanov S. Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 2006;20(16):W13-23
  • Kandathil AJ, Ramalingam S, Kannangai R, Molecular epidemiology of HIV. Indian J Med Res 2005;121:333-44
  • Campbell GR, Loret EP. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 2009;6:50
  • Robertson DL, Anderson JP, Bradac JA, HIV-1 nomenclature proposal. Science 2000;288:55-6
  • Korber B, Gaschen B, Yusim K, Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 2001;58:19-42
  • van Opijnen T, Jeeninga RE, Boerlijst MC, Human immunodeficiency virus type 1 subtypes have a distinct long terminal repeat that determines the replication rate in a host-cell-specific manner. J Virol 2004;78:3675-83
  • Gottlieb GS, Nickle DC, Jensen MA, Dual HIV-1 infection associated with rapid disease progression. Lancet 2004;363:619-22
  • Osmanov S, Pattou C, Walker N, Estimated global distribution and regional spread of HIV-1 genetic subtypes in the year 2000. J Acquir Immune Defic Syndr 2002;29:184-90
  • Gilbert PB, McKeague IW, Eisen G, Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal. Stat Med 2003;22:573-93
  • Reeves JD, Doms RW. Human immunodeficiency virus type 2. J Gen Virol 2002;83:1253-65
  • Kuiken C, Foley B, Freed E, HIV sequence compendium 2008. Theoretical Biology and Biophysics Group T-10, Los Aalamos NM; 2008
  • Frankel AD, Young JA. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 1998;67:1-25
  • Hu WS, Temin HM. Retroviral recombination and reverse transcription. Science 1990;250:1227-33
  • Nomaguchi M, Adachi A. Accessory proteins of HIV and innate anti-retroviral factors. Uirusu 2009;59:67-74
  • Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 1999;274(41):28837-40
  • El Kharroubi A, Piras G, Zensen R, Martin MA. Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol Cell Biol 1998;18:2535-44
  • Pessler F, Cron RQ. Reciprocal regulation of the nuclear factor of activated T cells and HIV-1. Genes Immun 2004;5:158-67
  • Bres V, Tagami H, Peloponese JM, Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 2002;21:6811-19
  • Li W, Li G, Steiner J, Nath A. Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009;16:205-20
  • Wong JK, Campbell GR, Spector SA. Differential induction of interleukin-10 in monocytes by HIV-1 Clade B and Clade C Tat proteins. J Biol Chem 2010;285:18319-25
  • Foucault M, Mayol K, Receveur-Brechot V, UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins 2010;78:1441-56
  • Hetzer C, Dormeyer W, Schnolzer M, Ott M. Decoding Tat: the biology of HIV Tat posttranslational modifications. Microbes Infect 2005;7:1364-9
  • Siddappa NB, Venkatramanan M, Venkatesh P, Transactivation and signaling functions of Tat are not correlated: biological and immunological characterization of HIV-1 subtype-C Tat protein. Retrovirology 2006;3:53
  • Romani B, Engelbrecht S, Glashoff RH. Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 2010;91:1-12
  • Pumfery A, Deng L, Maddukuri A, Chromatin remodeling and modification during HIV-1 Tat-activated transcription. Curr HIV Res 2003;1:343-62
  • Richman DD, Margolis DM, Delaney M, The challenge of finding a cure for HIV infection. Science 2009;323:1304-7
  • Huigen MC, Kamp W, Nottet HS. Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection. Eur J Clin Invest 2004;34:57-66
  • Matsui M, Warburton RJ, Cogswell PC, Effects of HIV-1 Tat on expression of HLA class I molecules. J Acquir Immune Defic Syndr Hum Retrovirol 1996;11:233-40
  • Sodroski J, Rosen C, Wong-Staal F, Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 1985;227(4683):171-3
  • Brady J, Kashanchi F. Tat gets the “green” light on transcription initiation. Retrovirology 2005;2:69
  • Kao SY, Calman AF, Luciw PA, Peterlin BM. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 1987;330:489-93
  • Barboric M, Peterlin BM. A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol 2005;3(2):e76
  • Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996;271:27176-83
  • Sims RJ III, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004;18:2437-68
  • Ping YH, Rana TM. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 2001;276:12951-8
  • Garber ME, Wei P, Kewal Ramani VN, The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 1998;12:3512-27
  • Tahirov TH, Babayeva ND, Varzavand K, Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 2010;46:747-51
  • Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 2009;10:148-55
  • Abrahamsen H, Stenmark H. Protein secretion: unconventional exit by exophagy. Curr Biol 2010;20:R415-18
  • Rayne F, Debaisieux S, Yezid H, Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 2010;29:1348-62
  • Ensoli B, Barillari G, Salahuddin SZ, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 1990;345:84-6
  • Xiao H, Neuveut C, Tiffany HL, Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 2000;97:11466-71
  • Gallo RC. Tat as one key to HIV-induced immune pathogenesis and Tat (correction of Pat) toxoid as an important component of a vaccine. Proc Natl Acad Sci USA 1999;96:8324-6
  • Darbinian N, Darbinyan A, Czernik M, HIV-1 Tat inhibits NGF-induced Egr-1 transcriptional activity and consequent p35 expression in neural cells. J Cell Physiol 2008;216:128-34
  • Chang HC, Samaniego F, Nair BC, HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 1997;11:1421-31
  • Rayne F, Debaisieux S, Bonhoure A, Beaumelle B. HIV-1 Tat is unconventionally secreted through the plasma membrane. Cell Biol Int 2010;34:409-13
  • Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006;443:651-7
  • De Matteis MA, Godi A. PI-loting membrane traffic. Nat Cell Biol 2004;6:487-92
  • Vendeville A, Rayne F, Bonhoure A, HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 2004;15:2347-60
  • Liu Y, Jones M, Hingtgen CM, Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 2000;6:1380-7
  • Tyagi M, Rusnati M, Presta M, Giacca M. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 2001;276:3254-61
  • Watkins JD, Campbell GR, Halimi H, Loret EP. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant. Retrovirology 2008;5:83
  • Peloponese JM Jr, Collette Y, Gregoire C, Full peptide synthesis, purification, and characterization of six Tat variants. Differences observed between HIV-1 isolates from Africa and other continents. J Biol Chem 1999;274:11473-8
  • Gregoire C, Peloponese JM Jr, Esquieu D, Homonuclear 1H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Biopolymers 2001;62:324-35
  • Shojania S, O'Neil JD. HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy. J Biol Chem 2006;281:8347-56
  • Yezid H, Konate K, Debaisieux S, Mechanism for HIV-1 Tat insertion into the endosome membrane. J Biol Chem 2009;284:22736-46
  • Garcia JA, Harrich D, Pearson L, Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J 1988;7:3143-7
  • Carroll R, Martarano L, Derse D. Identification of lentivirus tat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1 tat gene chimeras. J Virol 1991;65:3460-7
  • Churcher MJ, Lamont C, Hamy F, High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 1993;230:90-110
  • Hauber J, Malim MH, Cullen BR. Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 1989;63:1181-7
  • de Mareuil J, Carre M, Barbier P, HIV-1 Tat protein enhances microtubule polymerization. Retrovirology 2005;2:5
  • Barillari G, Gendelman R, Gallo RC, Ensoli B. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA 1993;90:7941-5
  • Mahlknecht U, Dichamp I, Varin A, NF-kappaB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells. J Leukoc Biol 2008;83:718-27
  • Lopez-Huertas MR, Callejas S, Abia D, Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 2010;38:3287-307
  • Bayer P, Kraft M, Ejchart A, Structural studies of HIV-1 Tat protein. J Mol Biol 1995;247:529-35
  • Koken SE, Greijer AE, Verhoef K, Intracellular analysis of in vitro modified HIV Tat protein. J Biol Chem 1994;269:8366-75
  • Peloponese JM Jr, Gregoire C, Opi S, 1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein. C R Acad Sci III 2000;323:883-94
  • Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol 2003;21:255-61
  • Herrmann CH, Rice AP. Specific interaction of the human immunodeficiency virus Tat proteins with a cellular protein kinase. Virology 1993;197:601-8
  • Yang X, Herrmann CH, Rice AP. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J Virol 1996;70:4576-84
  • Endo-Munoz L, Warby T, Harrich D, McMillan NA. Phosphorylation of HIV Tat by PKR increases interaction with TAR RNA and enhances transcription. Virol J 2005;2:17
  • Ammosova T, Berro R, Jerebtsova M, Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 2006;3:78
  • Choudhary C, Kumar C, Gnad F, Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834-40
  • Kiernan RE, Vanhulle C, Schiltz L, HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 1999;18:6106-18
  • Col E, Caron C, Seigneurin-Berny D, The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem 2001;276:28179-84
  • Dorr A, Kiermer V, Pedal A, Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO J 2002;21:2715-23
  • Mujtaba S, He Y, Zeng L, Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 2002;9:575-86
  • Pagans S, Pedal A, North BJ, SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 2005;3(2):e41
  • Amini S, Mameli G, Del Valle L, p73 Interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Mol Cell Biol 2005;25:8126-38
  • Berro R, Kehn K, de la Fuente C, Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 2006;80:3189-204
  • Boulanger MC, Liang C, Russell RS, Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 2005;79:124-31
  • Xie B, Invernizzi CF, Richard S, Wainberg MA. Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region. J Virol 2007;81:4226-34
  • McBride AE, Silver PA. State of the arg: protein methylation at arginine comes of age. Cell 2001;106:5-8
  • Sivakumaran H, van der Horst A, Fulcher AJ, Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat. J Virol 2009;83:11694-703
  • Van Duyne R, Easley R, Wu W, Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 2008;5:40
  • Pagans S, Kauder SE, Kaehlcke K, The cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 2010;7:234-44
  • Conaway RC, Brower CS, Conaway JW. Emerging roles of ubiquitin in transcription regulation. Science 2002;296:1254-8
  • Bres V, Kiernan RE, Linares LK, A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol 2003;5:754-61
  • Brondyk WH. Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 2009;463:131-47
  • Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2008;307:249-64
  • Peng H, Reinhart TA, Retzel EF, Single cell transcript analysis of human immunodeficiency virus gene expression in the transition from latent to productive infection. Virology 1995;206:16-27
  • Zauli G, Davis BR, Re MC, Tat protein stimulates production of transforming growth factor-beta 1 by marrow macrophages: a potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression. Blood 1992;80:3036-43
  • Westendorp MO, Li-Weber M, Frank RW, Krammer PH. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol 1994;68:4177-85
  • Scala G, Ruocco MR, Ambrosino C, The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 1994;179:961-71
  • Lotz M, Clark-Lewis I, Ganu V. HIV-1 transactivator protein Tat induces proliferation and TGFbeta expression in human articular chondrocytes. J Cell Biol 1994;124:365-71
  • Purvis SF, Georges DL, Williams TM, Lederman MM. Suppression of interleukin-2 and interleukin-2 receptor expression in Jurkat cells stably expressing the human immunodeficiency virus Tat protein. Cell Immunol 1992;144:32-42
  • Ito M, Ishida T, He L, HIV type 1 Tat protein inhibits interleukin 12 production by human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 1998;14:845-9
  • Gandhi N, Saiyed Z, Thangavel S, Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammatory and antiinflammatory cytokines by primary monocytes. AIDS Res Hum Retroviruses 2009;25:691-9
  • Gupta S, Boppana R, Mishra GC, HIV-1 Tat suppresses gp120-specific T cell response in IL-10-dependent manner. J Immunol 2008;180:79-88
  • Zagury D, Lachgar A, Chams V, Interferon alpha and Tat involvement in the immunosuppression of uninfected T cells and C-C chemokine decline in AIDS. Proc Natl Acad Sci USA 1998;95:3851-6
  • Barton CH, Biggs TE, Mee TR, Mann DA. The human immunodeficiency virus type 1 regulatory protein Tat inhibits interferon-induced iNos activity in a murine macrophage cell line. J Gen Virol 1996;77:1643-7
  • Gougeon ML, Lecoeur H, Dulioust A, Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J Immunol 1996;156:3509-20
  • Nardelli B, Gonzalez CJ, Schechter M, Valentine FT. CD4+ blood lymphocytes are rapidly killed in vitro by contact with autologous human immunodeficiency virus-infected cells. Proc Natl Acad Sci USA 1995;92:7312-6
  • Chen D, Wang M, Zhou S, Zhou Q. HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J 2002;21:6801-10
  • Zheng L, Yang YD, Lu GC, Salvato MS. Extracellular HIV Tat and Tat cysteine rich peptide increase CCR5 expression in monocytes. J Zhejiang Univ Sci B 2005;6:668-72
  • Chauhan A, Turchan J, Pocernich C, Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. J Biol Chem 2003;278:13512-19
  • Nakajima H, Mizuta N, Fujiwara I, Blockade of the Fas/Fas ligand interaction suppresses hepatocyte apoptosis in ischemia-reperfusion rat liver. Apoptosis 2008;13:1013-21
  • Zhang M, Li X, Pang X, Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture. J Biomed Sci 2002;9:133-9
  • Zauli G, Gibellini D. The human immunodeficiency virus type-1 (HIV-1) Tat protein and Bcl-2 gene expression. Leuk Lymphoma 1996;23:551-60
  • Westendorp MO, Frank R, Ochsenbauer C, Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995;375:497-500
  • Sarkaria JN, Busby EC, Tibbetts RS, Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999;59:4375-82
  • Albini A, Ferrini S, Benelli R, HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 1998;95:13153-8
  • Brake DA, Debouck C, Biesecker G. Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 1990;111:1275-81
  • Ju SM, Song HY, Lee JA, Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-kappaB dependent pathway in human astrocytes. Exp Mol Med 2009;41:86-93
  • Visentin S, Renzi M, Levi G. Altered outward-rectifying K+ current reveals microglial activation induced by HIV-1 Tat protein. Glia 2001;33:181-90
  • Ensoli B, Fiorelli V, Ensoli F, The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine 2009;28:371-8
  • Bellino S, Francavilla V, Longo O, Parallel conduction of the Phase I preventive and therapeutic trials based on the Tat vaccine candidate. Rev Recent Clin Trials 2009;4:195-204
  • Gavioli R, Cellini S, Castaldello A, The Tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: implications for the design of new vaccination strategies against AIDS. Vaccine 2008;26:727-37
  • Kittiworakarn J, Lecoq A, Moine G, HIV-1 Tat raises an adjuvant-free humoral immune response controlled by its core region and its ability to form cysteine-mediated oligomers. J Biol Chem 2006;281:3105-15
  • Stehbens WE. Oxidative stress in viral hepatitis and AIDS. Exp Mol Pathol 2004;77:121-32
  • Pande V, Ramos MJ. Nuclear factor kappa B: a potential target for anti-HIV chemotherapy. Curr Med Chem 2003;10:1603-15
  • McCarty MF, Barroso-Aranda J, Contreras F. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction--clinical implications. Med Hypotheses 2010;74:596-600
  • Fauci AS. Host factors and the pathogenesis of HIV-induced disease. Nature 1996;384:529-34
  • Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683-765
  • Fanales-Belasio E, Moretti S, Fiorelli V, HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol 2009;182:2888-97
  • Ameglio F, Cordiali Fei P, Solmone M, Serum IL-10 levels in HIV-positive subjects: correlation with CDC stages. J Biol Regul Homeost Agents 1994;8:48-52
  • Nunnari G, Smith JA, Daniel R. HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? J Exp Clin Cancer Res 2008;27:3
  • Srivastava DK, Tendler CL, Milani D, The HIV-1 transactivator protein Tat is a potent inducer of the human DNA repair enzyme beta-polymerase. AIDS 2001;15:433-40
  • Chipitsyna G, Slonina D, Siddiqui K, HIV-1 Tat increases cell survival in response to cisplatin by stimulating Rad51 gene expression. Oncogene 2004;23:2664-71
  • Li CJ, Wang C, Friedman DJ, Pardee AB. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1995;92:5461-4
  • Vene R, Benelli R, Noonan DM, Albini A. HIV-Tat dependent chemotaxis and invasion, key aspects of tat mediated pathogenesis. Clin Exp Metastasis 2000;18:533-8
  • Stettner MR, Nance JA, Wright CA, SMAD proteins of oligodendroglial cells regulate transcription of JC virus early and late genes coordinately with the Tat protein of human immunodeficiency virus type 1. J Gen Virol 2009;90:2005-14
  • Aoki Y, Tosato G. HIV-1 Tat enhances Kaposi sarcoma-associated herpesvirus (KSHV) infectivity. Blood 2004;104:810-14
  • Aoki Y, Tosato G. Targeted inhibition of angiogenic factors in AIDS-related disorders. Curr Drug Targets Infect Disord 2003;3:115-28
  • Guo HG, Pati S, Sadowska M, Tumorigenesis by human herpesvirus 8 vGPCR is accelerated by human immunodeficiency virus type 1 Tat. J Virol 2004;78:9336-42
  • Chen X, Cheng L, Jia X, Human immunodeficiency virus type 1 Tat accelerates Kaposi sarcoma-associated herpesvirus Kaposin A-mediated tumorigenesis of transformed fibroblasts in vitro as well as in nude and immunocompetent mice. Neoplasia 2009;11:1272-84
  • Nyagol J, Leucci E, Onnis A, The effects of HIV-1 Tat protein on cell cycle during cervical carcinogenesis. Cancer Biol Ther 2006;5:684-90
  • Tada H, Rappaport J, Lashgari M, Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells. Proc Natl Acad Sci USA 1990;87:3479-83
  • Enam S, Sweet TM, Amini S, Evidence for involvement of transforming growth factor beta1 signaling pathway in activation of JC virus in human immunodeficiency virus 1-associated progressive multifocal leukoencephalopathy. Arch Pathol Lab Med 2004;128:282-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.