422
Views
23
CrossRef citations to date
0
Altmetric
Reviews

AAV-mediated gene therapy for liver diseases: the prime candidate for clinical application?

, , , &
Pages 315-327 | Published online: 05 Jan 2011

Bibliography

  • Muzyczka N, Samulski RJ, Hermonat P, The genetics of adeno-associated virus. Adv Exp Med Biol 1984;179:151-61
  • Goncalves MA. Adeno-associated virus: from defective virus to effective vector. Virol J 2005;2:43
  • McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004;38:819-45
  • Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006;14:316-27
  • Ohi S, Dixit M, Tillery MK, Construction and replication of an adeno-associated virus expression vector that contains human beta-globin cDNA. Gene 1990;89:279-82
  • Gao GP, Alvira MR, Wang L, Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002;99:11854-9
  • Nakai H, Fuess S, Storm TA, Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005;79:214-24
  • Nakai H, Storm TA, Kay MA. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol 2000;74:9451-63
  • Ferrari FK, Samulski T, Shenk T, Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996;70:3227-34
  • Fisher KJ, Gao GP, Weitzman MD, Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996;70:520-32
  • Wu Z, Sun J, Zhang T, Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther 2008;16:280-9
  • Pan Q, Tilanus HW, Janssen HL, Prospects of RNAi and microRNA-based therapies for hepatitis C. Expert Opin Biol Ther 2009;9:713-24
  • Wright JF. Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 2008;15:840-8
  • Zhang H, Xie J, Xie Q, Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production. Hum Gene Ther 2009;20:922-9
  • Xiao W, Chirmule N, Berta SC, Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999;73:3994-4003
  • Lock M, Alvira M, Vandenberghe LH, Rapid, simple and versatile manufacturing of recombinant adeno-associated virus vectors at scale. Hum Gene Ther 2010;21:1259-71
  • Clark KR, Voulgaropoulou F, Fraley DM, Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 1995;6:1329-41
  • Fisher KJ, Kelley WM, Burda JF, A novel adenovirus-adeno-associated virus hybrid vector that displays efficient rescue and delivery of the AAV genome. Hum Gene Ther 1996;7:2079-87
  • Conway JE, Zolotukhin S, Muzyczka N, Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap. J Virol 1997;71:8780-9
  • Sollerbrant K, Elmen J, Wahlestedt C, A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol 2001;82:2051-60
  • Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002;13:1935-43
  • Smith RH, Levy JR, Kotin RM. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther 2009;17:1888-96
  • Wright JF. Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 2009;20:698-706
  • Blaese RM, Culver KW, Miller AD, T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995;270:475-80
  • Jenks S. Gene therapy death – “everyone has to share in the guilt”. J Natl Cancer Inst 2000;92:98-100
  • Check E. A tragic setback. Nature 2002;420:116-18
  • Friedmann T. Clinical gene therapy: lessons from the ether dome. Mol Ther 2004;10:205-6
  • Friedmann T. A new serious adverse event in a gene therapy study. Mol Ther 2007;15:1899-900
  • Bainbridge JW, Smith AJ, Barker SS, Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008;358:2231-9
  • Maguire AM, Simonelli F, Pierce EA, Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008;358:2240-8
  • Cideciyan AV, Aleman TS, Boye SL, Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008;105:15112-17
  • Maguire AM, High KA, Auricchio A, Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009;374:1597-605
  • Gene Therapy Clinical Trials Worldwide. Available from: http://www.wiley.com/legacy/wileychi/genmed/clinical/
  • Manno CS, Pierce GF, Arruda VR, Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006;12:342-7
  • ClinicalTrials.gov; NCT00515710 and NCT00979238
  • Barbera-Guillem E, Vidal-Vanaclocha F. Sinusoidal structure of the liver. Rev Biol Cell 1988;16:1-34, 54-68
  • De Leeuw AM, Brouwer A, Knook DL. Sinusoidal endothelial cells of the liver: fine structure and function in relation to age. J Electron Microsc Tech 1990;14:218-36
  • Skandalakis JE, Skandalakis LJ, Skandalakis PN, Hepatic surgical anatomy. Surg Clin North Am 2004;84:413-35, viii
  • Suda T, Liu D. Hydrodynamic gene delivery: its principles and applications. Mol Ther 2007;15:2063-9
  • Brunetti-Pierri N, Stapleton GE, Law M, Efficient, long-term hepatic gene transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman primates. Mol Ther 2009;17:327-33
  • Grossman M, Raper SE, Kozarsky K, Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet 1994;6:335-41
  • Shaked A, Csete ME, Drazan KE, Adenovirus-mediated gene transfer in the transplant setting. II. Successful expression of transferred cDNA in syngeneic liver grafts. Transplantation 1994;57:1508-11
  • Olthoff KM, Judge TA, Gelman AE, Adenovirus-mediated gene transfer into cold-preserved liver allografts: survival pattern and unresponsiveness following transduction with CTLA4Ig. Nat Med 1998;4:194-200
  • Henry SD, van der Wegen P, Metselaar HJ, Hydroxyethyl starch-based preservation solutions enhance gene therapy vector delivery under hypothermic conditions. Liver Transpl 2008;14:1708-17
  • Murphy SL, High KA. Gene therapy for haemophilia. Br J Haematol 2008;140:479-87
  • Costea I, Isasi R, Knoppers BM, Haemophilia gene therapy: the patients' perspective. Haemophilia 2009;15:1159-61
  • Matrai J, Chuah MK, Vandendriessche T. Preclinical and clinical progress in hemophilia gene therapy. Curr Opin Hematol 2010;17:387-92
  • Kelley K, Verma I, Pierce GF. Gene therapy: reality or myth for the global bleeding disorders community? Haemophilia 2002;8:261-7
  • Kay MA, Manno CS, Ragni MV, Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000;24:257-61
  • Powell JS, Ragni MV, White GC II, Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 2003;102:2038-45
  • Roth DA, Tawa NE Jr, O'Brien JM, Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001;344:1735-42
  • Nakai H, Herzog RW, Hagstrom JN, Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 1998;91:4600-7
  • Mount JD, Herzog RW, Tillson DM, Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002;99:2670-6
  • Scallan CD, Lillicrap D, Jiang H, Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector. Blood 2003;102:2031-7
  • Scallan CD, Liu T, Parker AE, Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII. Blood 2003;102:3919-26
  • Sarkar R, Xiao W, Kazazian HH Jr. A single adeno-associated virus (AAV)-murine factor VIII vector partially corrects the hemophilia A phenotype. J Thromb Haemost 2003;1:220-6
  • Jiang H, Lillicrap D, Patarroyo-White S, Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 2006;108:107-15
  • Ishiwata A, Mimuro J, Mizukami H, Liver-restricted expression of the canine factor VIII gene facilitates prevention of inhibitor formation in factor VIII-deficient mice. J Gene Med 2009;11:1020-9
  • Nathwani AC, Gray JT, McIntosh J, Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood 2007;109:1414-21
  • Herzog RW. Hepatic AAV gene transfer and the immune system: friends or foes? Mol Ther 2010;18:1063-6
  • Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992;1:445-66
  • Grossman M, Rader DJ, Muller DW, A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med 1995;1:1148-54
  • Kozarsky KF, McKinley DR, Austin LL, In vivo correction of low density lipoprotein receptor deficiency in the watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem 1994;269:13695-702
  • Chen SJ, Rader DJ, Tazelaar J, Prolonged correction of hyperlipidemia in mice with familial hypercholesterolemia using an adeno-associated viral vector expressing very-low-density lipoprotein receptor. Mol Ther 2000;2:256-61
  • Nomura S, Merched A, Nour E, Low-density lipoprotein receptor gene therapy using helper-dependent adenovirus produces long-term protection against atherosclerosis in a mouse model of familial hypercholesterolemia. Gene Ther 2004;11:1540-8
  • Kankkonen HM, Vahakangas E, Marr RA, Long-term lowering of plasma cholesterol levels in LDL-receptor-deficient WHHL rabbits by gene therapy. Mol Ther 2004;9:548-56
  • Lebherz C, Gao G, Louboutin JP, Gene therapy with novel adeno-associated virus vectors substantially diminishes atherosclerosis in a murine model of familial hypercholesterolemia. J Gene Med 2004;6:663-72
  • Takahashi M, Ilan Y, Chowdhury NR, Long term correction of bilirubin-UDP-glucuronosyltransferase deficiency in Gunn rats by administration of a recombinant adenovirus during the neonatal period. J Biol Chem 1996;271:26536-42
  • van der Wegen P, Louwen R, Imam AM, Successful treatment of UGT1A1 deficiency in a rat model of Crigler-Najjar disease by intravenous administration of a liver-specific lentiviral vector. Mol Ther 2006;13:374-81
  • Schmitt F, Remy S, Dariel A, Lentiviral vectors that express UGT1A1 in liver and contain miR-142 target sequences normalize hyperbilirubinemia in Gunn rats. Gastroenterology 2010;139:999-1007
  • Wang X, Sarkar DP, Mani P, Long-term reduction of jaundice in Gunn rats by nonviral liver-targeted delivery of sleeping beauty transposon. Hepatology 2009;50:815-24
  • Seppen J, Bakker C, de Jong B, Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats. Mol Ther 2006;13:1085-92
  • Hannon GJ. RNA interference. Nature 2002;418:244-51
  • Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev 2005;19:517-29
  • Guo H, Ingolia NT, Weissman JS, Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835-40
  • Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 2003;37:764-70
  • McCaffrey AP, Nakai H, Pandey K, Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003;21:639-44
  • Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res 2008;25:72-86
  • Chen CC, Ko TM, Ma HI, Long-term inhibition of hepatitis B virus in transgenic mice by double-stranded adeno-associated virus 8-delivered short hairpin RNA. Gene Ther 2007;14:11-19
  • Chen CC, Sun CP, Ma HI, Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Mol Ther 2009;17:352-9
  • Li Z, He ML, Yao H, Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules. BMB Rep 2009;42:59-64
  • Giering JC, Grimm D, Storm TA, Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008;16:1630-6
  • Grimm D, Streetz KL, Jopling CL, Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41
  • Grimm D, Wang L, Lee JS, Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 2010;120:3106-19
  • Sarbah SA, Younossi ZM. Hepatitis C: an update on the silent epidemic. J Clin Gastroenterol 2000;30:125-43
  • Manns MP, McHutchison JG, Gordon SC, Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001;358:958-65
  • Garcia-Retortillo M, Forns X. Prevention and treatment of hepatitis C virus recurrence after liver transplantation. J Hepatol 2004;41:2-10
  • Pan QW, Henry SD, Scholte BJ, New therapeutic opportunities for hepatitis C based on small RNA. World J Gastroenterol 2007;13:4431-6
  • Jopling CL, Yi M, Lancaster AM, Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005;309:1577-81
  • Elmen J, Lindow M, Schutz S, LNA-mediated microRNA silencing in non-human primates. Nature 2008;452:896-9
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327:198-201
  • Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA 2003;100:2014-18
  • Yokota T, Sakamoto N, Enomoto N, Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs. EMBO Rep 2003;4:602-8
  • Prabhu R, Garry RF, Dash S. Small interfering RNA targeted to stem-loop II of the 5′ untranslated region effectively inhibits expression of six HCV genotypes. Virol J 2006;3:100
  • Chang B, Lee CH, Lee JH, Comparative analysis of intracellular inhibition of hepatitis C virus replication by small interfering RNAs. Biotechnol Lett 2010;32:1231-7
  • Neumann AU, Lam NP, Dahari H, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 1998;282:103-7
  • Wilson JA, Richardson CD. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol 2005;79:7050-8
  • Konishi M, Wu CH, Kaito M, siRNA-resistance in treated HCV replicon cells is correlated with the development of specific HCV mutations. J Viral Hepat 2006;13:756-61
  • Henry SD, van der Wegen P, Metselaar HJ, Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther 2006;14:485-93
  • Grimm D, Kay MA. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 2007;15:878-88
  • Tacere Therapeutics. Available from: http://www.tacerebio.com/Technology/technology.html
  • Hoti E, Adam R. Liver transplantation for primary and metastatic liver cancers. Transpl Int 2008;21:1107-17
  • Hernandez-Alcoceba R, Sangro B, Prieto J. Gene therapy of liver cancer. Ann Hepatol 2007;6:5-14
  • Pan QW, Cai R, Liu XY, A novel strategy for cancer gene therapy: RNAi. Chin Sci Bull 2006;51:1145-51
  • Pan Q, Liu B, Liu J, Synergistic antitumor activity of XIAP-shRNA and TRAIL expressed by oncolytic adenoviruses in experimental HCC. Acta Oncol 2008;47:135-44
  • Kota J, Chivukula RR, O'Donnell KA, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137:1005-17
  • Rossi JJ. New hope for a microRNA therapy for liver cancer. Cell 2009;137:990-2
  • Habib N, Salama H, Abd El Latif Abu Median A, Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther 2002;9:254-9
  • Sangro B, Mazzolini G, Ruiz M, A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma. Cancer Gene Ther 2010;17:837-43
  • Penuelas I, Mazzolini G, Boan JF, Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 2005;128:1787-95
  • Pan QW, Zhong SY, Liu BS, Enhanced sensitivity of hepatocellular carcinoma cells to chemotherapy with a smac-armed oncolytic adenovirus. Acta Pharmacol Sin 2007;28:1996-2004
  • Pan Q, Liu B, Liu J, Synergistic induction of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying TRAIL. Mol Cell Biochem 2007;304:315-23
  • Wang Y, Huang F, Cai H, The efficacy of combination therapy using adeno-associated virus-TRAIL targeting to telomerase activity and cisplatin in a mice model of hepatocellular carcinoma. J Cancer Res Clin Oncol 2010;136:1827-37
  • Yang ZX, Wang D, Wang G, Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J Cancer Res Clin Oncol 2010;136:625-30
  • Tian G, Liu J, Zhou JS, Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a pilot phase II trial. Anticancer Drugs 2009;20:389-95
  • Li N, Zhou J, Weng D, Adjuvant adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of liver transplantation in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2007;13:5847-54
  • Ishibashi H, Nakamura M, Komori A, Liver architecture, cell function, and disease. Semin Immunopathol 2009;31:399-409
  • Nemeth E, Baird AW, O'Farrelly C. Microanatomy of the liver immune system. Semin Immunopathol 2009;31:333-43
  • Demirkiran A, Bosma BM, Kok A, Allosuppressive donor CD4+CD25+ regulatory T cells detach from the graft and circulate in recipients after liver transplantation. J Immunol 2007;178:6066-72
  • Bosma BM, Metselaar HJ, Mancham S, Characterization of human liver dendritic cells in liver grafts and perfusates. Liver Transpl 2006;12:384-93
  • Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 2009;27:147-63
  • Calne RY, Sells RA, Pena JR, Induction of immunological tolerance by porcine liver allografts. Nature 1969;223:472-6
  • Kamada N, Wight DG. Antigen-specific immunosuppression induced by liver transplantation in the rat. Transplantation 1984;38:217-21
  • McCaffrey AP, Fawcett P, Nakai H, The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol Ther 2008;16:931-41
  • Hensley SE, Amalfitano A. Toll-like receptors impact on safety and efficacy of gene transfer vectors. Mol Ther 2007;15:1417-22
  • Zhang Y, Chirmule N, Gao G, CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 2000;74:8003-10
  • LoDuca PA, Hoffman BE, Herzog RW. Hepatic gene transfer as a means of tolerance induction to transgene products. Curr Gene Ther 2009;9:104-14
  • Dobrzynski E, Fitzgerald JC, Cao O, Prevention of cytotoxic T lymphocyte responses to factor IX-expressing hepatocytes by gene transfer-induced regulatory T cells. Proc Natl Acad Sci USA 2006;103:4592-7
  • Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood 2007;110:2334-41
  • Mingozzi F, Maus MV, Hui DJ, CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007;13:419-22
  • Pien GC, Basner-Tschakarjan E, Hui DJ, Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J Clin Invest 2009;119:1688-95
  • Erles K, Sebokova P, Schlehofer JR. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 1999;59:406-11
  • Blacklow NR, Hoggan MD, Rowe WP. Serologic evidence for human infection with adenovirus-associated viruses. J Natl Cancer Inst 1968;40:319-27
  • Parks WP, Boucher DW, Melnick JL, Seroepidemiological and ecological studies of the adenovirus-associated satellite viruses. Infect Immun 1970;2:716-22
  • Calcedo R, Vandenberghe LH, Gao G, Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009;199:381-90
  • Boutin S, Monteilhet V, Veron P, Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010;21:704-12
  • Vandenberghe LH, Wang L, Somanathan S, Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med 2006;12:967-71
  • Davidoff AM, Gray JT, Ng CY, Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 2005;11:875-88
  • Huttner NA, Girod A, Perabo L, Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Ther 2003;10:2139-47
  • Maheshri N, Koerber JT, Kaspar BK, Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006;24:198-204
  • Maersch S, Huber A, Buning H, Optimization of stealth adeno-associated virus vectors by randomization of immunogenic epitopes. Virology 2010;397:167-75
  • Jiang H, Couto LB, Patarroyo-White S, Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 2006;108:3321-8
  • Arruda VR, Stedman HH, Haurigot V, Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood 2010;115:4678-88
  • Wang Z, Allen JM, Riddell SR, Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 2007;18:18-26
  • Wang Z, Kuhr CS, Allen JM, Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 2007;15:1160-6
  • Yuasa K, Yoshimura M, Urasawa N, Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Ther 2007;14:1249-60
  • Halbert CL, Madtes DK, Vaughan AE, Expression of human alpha1-antitrypsin in mice and dogs following AAV6 vector-mediated gene transfer to the lungs. Mol Ther 2010;18:1165-72
  • Nash KL, Jamil B, Maguire AJ, Hepatocyte-specific gene expression from integrated lentiviral vectors. J Gene Med 2004;6:974-83
  • Kramer MG, Barajas M, Razquin N, In vitro and in vivo comparative study of chimeric liver-specific promoters. Mol Ther 2003;7:375-85
  • Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009;10:578-85
  • Brown BD, Venneri MA, Zingale A, Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 2006;12:585-91
  • Brown BD, Cantore A, Annoni A, A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 2007;110:4144-52
  • Golshayan D, Pascual M. Tolerance-inducing immunosuppressive strategies in clinical transplantation: an overview. Drugs 2008;68:2113-30
  • Pan Q, Metselaar HJ, de Ruiter P, Calcineurin inhibitor tacrolimus does not interfere with the suppression of hepatitis C virus infection by interferon-alpha. Liver Transpl 2010;16:520-6
  • Tjon AS, Nicolaas JS, Kwekkeboom J, Increased incidence of early de novo cancer in liver graft recipients treated with cyclosporine: an association with C2 monitoring and recipient age. Liver Transpl 2010;16:837-46
  • Watashi K, Hijikata M, Hosaka M, Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology 2003;38:1282-8
  • Henry SD, Metselaar HJ, Lonsdale RC, Mycophenolic acid inhibits hepatitis C virus replication and acts in synergy with cyclosporin A and interferon-alpha. Gastroenterology 2006;131:1452-62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.