293
Views
44
CrossRef citations to date
0
Altmetric
Reviews

Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data

&
Pages 359-374 | Published online: 05 Jan 2011

Bibliography

  • Lewis MR. Rhythmical contraction of the skeletal muscle tissue observed in tissue cultures. Am J Physiol 1915;38:153-61
  • Partridge TA, Grounds M, Sloper JC. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 1978;273:306-8
  • Skuk D. Myoblast transplantation for inherited myopathies: a clinical approach. Expert Opin Biol Ther 2004;4:1871-85
  • Collins CA, Olsen I, Zammit PS, Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005;122:289-301
  • Betz EH, Firket H, Reznik M. Some aspects of muscle regeneration. Int Rev Cytol 1966;19:203-27
  • Zammit PS, Heslop L, Hudon V, Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 2002;281:39-49
  • Peault B, Rudnicki M, Torrente Y, Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 2007;15:867-77
  • Vauchez K, Marolleau JP, Schmid M, Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 2009;17:1948-58
  • Yablonka-Reuveni Z, Nameroff M. Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle. Differentiation 1990;45:21-8
  • Wang J, Conboy I. Embryonic vs. adult myogenesis: challenging the ‘regeneration recapitulates development’ paradigm. J Mol Cell Biol 2010;2:1-4
  • Lepper C, Conway SJ, Fan CM. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 2009;460:627-31
  • Cossu G, Molinaro M. Cell heterogeneity in the myogenic lineage. Curr Top Dev Biol 1987;23:185-208
  • Konigsberg IR. The differentiation of cross-striated myofibrils in short term cell culture. Exp Cell Res 1960;21:414-20
  • Vilquin JT, Marolleau JP, Hagege A, Cell transplantation for post-ischemic heart failure. Arch Mal Coeur Vaiss 2002;95:1219-25
  • Lipton BH, Schultz E. Developmental fate of skeletal muscle satellite cells. Science 1979;205:1292-4
  • Watt DJ, Lambert K, Morgan JE, Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 1982;57:319-31
  • Kikuchi T, Doerr L, Ashmore CR. A possible mechanism of phenotypic expression of normal and dystrophic genomes on succinic dehydrogenase activity and fiber size within a single myofiber of muscle transplants. J Neurol Sci 1980;45:273-86
  • Yao SN, Kurachi K. Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells. J Cell Sci 1993;105:957-63
  • Partridge TA, Morgan JE, Coulton GR, Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 1989;337:176-9
  • Karpati G, Pouliot Y, Zubrzycka-Gaarn E, Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. Am J Pathol 1989;135:27-32
  • Kinoshita I, Vilquin JT, Guerette B, Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve 1994;17:1407-15
  • Vilquin JT, Kinoshita I, Roy B, Partial laminin alpha2 chain restoration in alpha2 chain-deficient dy/dy mouse by primary muscle cell culture transplantation. J Cell Biol 1996;133:185-97
  • Leriche-Guerin K, Anderson LV, Wrogemann K, Dysferlin expression after normal myoblast transplantation in SCID and in SJL mice. Neuromuscul Disord 2002;12:167-73
  • Mendell JR, Kissel JT, Amato AA, Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N Engl J Med 1995;333:832-8
  • Skuk D, Goulet M, Roy B, Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006;65:371-86
  • Skuk D, Goulet M, Roy B, First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 2007;17:38-46
  • Skuk D, Roy B, Goulet M, Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004;9:475-82
  • Pavlath GK, Rich K, Webster SG, Blau HM. Localization of muscle gene products in nuclear domains. Nature 1989;337:570-3
  • Ralston E, Hall ZW. Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes. J Cell Biol 1992;119:1063-8
  • Hall ZW, Ralston E. Nuclear domains in muscle cells. Cell 1989;59:771-2
  • Chretien F, Dreyfus PA, Christov C, In vivo fusion of circulating fluorescent cells with dystrophin-deficient myofibers results in extensive sarcoplasmic fluorescence expression but limited dystrophin sarcolemmal expression. Am J Pathol 2005;166:1741-8
  • Gussoni E, Blau HM, Kunkel LM. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 1997;3:970-7
  • Alameddine HS, Louboutin JP, Dehaupas M, Functional recovery induced by satellite cell grafts in irreversibly injured muscles. Cell Transplant 1994;3:3-14
  • Wernig A, Zweyer M, Irintchev A. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol (Lond) 2000;522:333-45
  • Wernig A, Irintchev A, Lange G. Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression. J Physiol (Lond) 1995;484:493-504
  • Irintchev A, Langer M, Zweyer M, Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts. J Physiol (Lond) 1997;500:775-85
  • Vracko R, Benditt EP. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol 1972;55:406-19
  • Kinoshita I, Vilquin JT, Tremblay JP. Mechanism of increasing dystrophin-positive myofibers by myoblast transplantation: study using mdx/beta-galactosidase transgenic mice. Acta Neuropathol 1996;91:489-93
  • Irintchev A, Rosenblatt JD, Cullen MJ, Ectopic skeletal muscles derived from myoblasts implanted under the skin. J Cell Sci 1998;111:3287-97
  • Satoh A, Labrecque C, Tremblay JP. Myotubes can be formed within implanted adipose tissue. Transplant Proc 1992;24:3017-19
  • Pisani DF, Dechesne CA, Sacconi S, Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential. Stem Cells 2010;28:753-64
  • Borisov AB. Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology? Wound Repair Regen 1999;7:26-35
  • Yokota T, Lu QL, Morgan JE, Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci 2006;119:2679-87
  • Gross JG, Morgan JE. Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury. Muscle Nerve 1999;22:174-85
  • Xu X, Yang Z, Liu Q, Wang Y. In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther 2010;18:835-42
  • Heslop L, Beauchamp JR, Tajbakhsh S, Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5nlacZl+ mouse. Gene Ther 2001;8:778-83
  • Skuk D, Paradis M, Goulet M, Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells. Mol Ther 2010;18:1689-97
  • Brimah K, Ehrhardt J, Mouly V, Human muscle precursor cell regeneration in the mouse host is enhanced by growth factors. Hum Gene Ther 2004;15:1109-24
  • Ehrhardt J, Brimah K, Adkin C, Human muscle precursor cells give rise to functional satellite cells in vivo. Neuromuscul Disord 2007;17:631-8
  • Negroni E, Riederer I, Chaouch S, In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 2010;17:1771-8
  • Sampaolesi M, Blot S, D'Antona G, Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006;444:574-9
  • Sampaolesi M, Torrente Y, Innocenzi A, Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003;301:487-92
  • Torrente Y, Belicchi M, Sampaolesi M, Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004;114:182-95
  • Meng J, Muntoni F, Morgan JE. Stem cells to treat muscular dystrophies – Where are we? Neuromuscul Disord; doi:10.1016/j.nmd.2010.10.004
  • Skuk D, Goulet M, Roy B, Tremblay JP. Myoblast transplantation in whole muscle of nonhuman primates. J Neuropathol Exp Neurol 2000;59:197-206
  • Skuk D, Goulet M, Roy B, Tremblay JP. Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol 2002;175:112-26
  • Quenneville SP, Chapdelaine P, Skuk D, Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models. Mol Ther 2007;15:431-8
  • El Fahime E, Mills P, Lafreniere JF, The urokinase plasminogen activator: an interesting way to improve myoblast migration following their transplantation. Exp Cell Res 2002;280:169-78
  • Lafreniere JF, Mills P, Bouchentouf M, Tremblay JP. Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res 2006;312:1127-41
  • Mills P, Dominique JC, Lafreniere JF, A synthetic mechano growth factor E Peptide enhances myogenic precursor cell transplantation success. Am J Transplant 2007;7:2247-59
  • Mills P, Lafreniere JF, Benabdallah BF, A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor. Exp Cell Res 2007;313:527-37
  • Lafreniere JF, Caron MC, Skuk D, Growth factor coinjection improves the migration potential of monkey myogenic precursors without affecting cell transplantation success. Cell Transplant 2009;18:719-30
  • Skuk D, Goulet M, Paradis M, Tremblay JP. Intramuscular migration capacity of transplanted myoblasts after subcutaneous implantation: a study in nonhuman primates. Tissue Eng 2009;15:713
  • Vilquin JT, Asselin I, Guerette B, Successful myoblast allotransplantation in mdx mice using rapamycin. Transplantation 1995;59:422-6
  • Pin CL, Merrifield PA. Developmental potential of rat L6 myoblasts in vivo following injection into regenerating muscles. Dev Biol 1997;188:147-66
  • Cantini M, Massimino ML, Catani C, Gene transfer into satellite cell from regenerating muscle: bupivacaine allows beta-Gal transfection and expression in vitro and in vivo. In Vitro Cell Dev Biol Anim 1994;30A:131-3
  • Lazerges C, Daussin PA, Coulet B, Transplantation of primary satellite cells improves properties of reinnervated skeletal muscles. Muscle Nerve 2004;29:218-26
  • Bouchentouf M, Benabdallah BF, Bigey P, Vascular endothelial growth factor reduced hypoxia-induced death of human myoblasts and improved their engraftment in mouse muscles. Gene Ther 2008;15:404-14
  • Skuk D, Roy B, Goulet M, Tremblay JP. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Exp Neurol 1999;155:22-30
  • Kinoshita I, Vilquin JT, Asselin I, Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin produced only a relatively small increase of dystrophin-positive membrane. Muscle Nerve 1998;21:91-103
  • Skuk D, Goulet M, Tremblay JP. Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant 2006;15:659-63
  • Cesar M, Roussanne-Domergue S, Coulet B, Transplantation of adult myoblasts or adipose tissue precursor cells by high-density injection failed to improve reinnervated skeletal muscles. Muscle Nerve 2008;37:219-30
  • Richard PL, Gosselin C, Laliberte T, A first semimanual device for clinical intramuscular repetitive cell injections. Cell Transplant 2010;19:67-78
  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Quantitative studies of efficacy of myoblast transplantation. Muscle Nerve 1994;(suppl 1):S261
  • Huard J, Acsadi G, Jani A, Gene transfer into skeletal muscles by isogenic myoblasts. Hum Gene Ther 1994;5:949-58
  • Guerette B, Skuk D, Celestin F, Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol 1997;159:2522-31
  • Qu Z, Balkir L, Van Deutekom JC, Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 1998;142:1257-67
  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999;144:1113-22
  • Skuk D, Caron NJ, Goulet M, Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol 2003;62:951-67
  • Holzer N, Hogendoorn S, Zurcher L, Autologous transplantation of porcine myogenic precursor cells in skeletal muscle. Neuromuscul Disord 2005;15:237-44
  • Guerette B, Asselin I, Skuk D, Control of inflammatory damage by anti-LFA-1: increase success of myoblast transplantation. Cell Transplant 1997;6:101-7
  • Sammels LM, Bosio E, Fragall CT, Innate inflammatory cells are not responsible for early death of donor myoblasts after myoblast transfer therapy. Transplantation 2004;77:1790-7
  • Bouchentouf M, Benabdallah BF, Rousseau J, Induction of Anoikis following myoblast transplantation into SCID mouse muscles requires the Bit1 and FADD pathways. Am J Transplant 2007;7:1491-505
  • Cousins JC, Woodward KJ, Gross JG, Regeneration of skeletal muscle from transplanted immortalised myoblasts is oligoclonal. J Cell Sci 2004;117:3259-69
  • Skuk D, Paradis M, Goulet M, Tremblay JP. Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation 2007;84:1307-15
  • Jones PH. Implantation of cultured regenerate muscle cells into adult rat muscle. Exp Neurol 1979;66:602-10
  • Guerette B, Asselin I, Vilquin JT, Lymphocyte infiltration following allo- and xenomyoblast transplantation in mdx mice. Muscle Nerve 1995;18:39-51
  • Irintchev A, Zweyer M, Wernig A. Cellular and molecular reactions in mouse muscles after myoblast implantation. J Neurocytol 1995;24:319-31
  • Wernig A, Irintchev A. “Bystander” damage of host muscle caused by implantation of MHC-compatible myogenic cells. J Neurol Sci 1995;130:190-6
  • Kinoshita I, Roy R, Dugre FJ, Myoblast transplantation in monkeys: control of immune response by FK506. J Neuropathol Exp Neurol 1996;55:687-97
  • Kinoshita I, Vilquin JT, Gravel C, Myoblast allotransplantation in primates. Muscle Nerve 1995;18:1217-18
  • Pavlath GK, Rando TA, Blau HM. Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers. J Cell Biol 1994;127:1923-32
  • Camirand G, Rousseau J, Ducharme ME, Novel Duchenne muscular dystrophy treatment through myoblast transplantation tolerance with anti-CD45RB, anti-CD154 and mixed chimerism. Am J Transplant 2004;4:1255-65
  • Stephan L, Pichavant C, Bouchentouf M, Induction of tolerance across fully mismatched barriers by a nonmyeloablative treatment excluding antibodies or irradiation use. Cell Transplant 2006;15:835-46
  • Camirand G, Caron NJ, Turgeon NA, Treatment with anti-CD154 antibody and donor-specific transfusion prevents acute rejection of myoblast transplantation. Transplantation 2002;73:453-61
  • Camirand G, Stephan L, Rousseau J, Central tolerance to myogenic cell transplants does not include muscle neoantigens. Transplantation 2008;85:1791-801
  • Ohtsuka Y, Udaka K, Yamashiro Y, Dystrophin acts as a transplantation rejection antigen in dystrophin-deficient mice: implication for gene therapy. J Immunol 1998;160:4635-40
  • Brazelton TR, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 1996;8:710-20
  • Gussoni E, Bennett RR, Muskiewicz KR, Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 2002;110:807-14
  • Dell'Agnola C, Wang Z, Storb R, Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs. Blood 2004;104:4311-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.