1,682
Views
72
CrossRef citations to date
0
Altmetric
Reviews

Bispecific antibodies engage T cells for antitumor immunotherapy

, , , , &
Pages 843-853 | Published online: 30 Mar 2011

Bibliography

  • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010;60:277-300
  • Bailar JC III, Gornik HL. Cancer undefeated. N Engl J Med 1997;336:1569-74
  • Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 2001;411:380-4
  • Van Pel A, Boon T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci USA 1982;79:4718-22
  • Malyankar UM. Tumor-associated antigens and biomarkers in cancer and immune therapy. Int Rev Immunol 2007;26:223-47
  • Cheever MA, Allison JP, Ferris AS, The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009;15:5323-37
  • Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol 2005;23:1073-8
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495-7
  • Zhao Y, Wang QJ, Yang S, A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 2009;183:5563-74
  • Shankaran V, Ikeda H, Bruce AT, IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001;410:1107-11
  • Zhou G, Lu Z, McCadden JD, Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med 2004;200:1581-92
  • Dazzi F, Szydlo RM, Cross NC, Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 2000;96:2712-16
  • Lokhorst HM, Schattenberg A, Cornelissen JJ, Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000;18:3031-7
  • Nishida T, Hudecek M, Kostic A, Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia. Clin Cancer Res 2009;15:4759-68
  • Rezvani K, Yong AS, Savani BN, Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood 2007;110:1924-32
  • Sprangers B, Van Wijmeersch B, Fevery S, Experimental and clinical approaches for optimization of the graft-versus-leukemia effect. Nat Clin Pract Oncol 2007;4:404-14
  • Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 2008;112:4371-83
  • Pages F, Berger A, Camus M, Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353:2654-66
  • Galon J, Costes A, Sanchez-Cabo F, Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-4
  • Wahlin BE, Sander B, Christensson B, Kimby E. CD8+ T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res 2007;13:388-97
  • Rosenberg SA, Packard BS, Aebersold PM, Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988;319:1676-80
  • Dudley ME, Yang JC, Sherry R, Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008;26:5233-9
  • Dudley ME, Wunderlich JR, Yang JC, Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005;23:2346-57
  • Coccoris M, de Witte MA, Schumacher TN. Prospects and limitations of T cell receptor gene therapy. Curr Gene Ther 2005;5:583-93
  • Duval L, Schmidt H, Kaltoft K, Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a Phase I trial in metastatic melanoma. Clin Cancer Res 2006;12:1229-36
  • Cartellieri M, Bachmann M, Feldmann A, Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol 2010;2010:956304
  • Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000;74:181-273
  • Meidenbauer N, Zippelius A, Pittet MJ, High frequency of functionally active Melan-A-specific T cells in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 2004;64:6319-26
  • Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growth. Immunol Today 2000;21:455-64
  • Hayashi T, Faustman DL. Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice. Cancer Res 2002;62:24-7
  • Gobbi G, Mirandola P, Micheloni C, Expression of HLA class I antigen and proteasome subunits LMP-2 and LMP-10 in primary vs. metastatic breast carcinoma lesions. Int J Oncol 2004;25:1625-9
  • Johnsen AK, Templeton DJ, Sy M, Harding CV. Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 1999;163:4224-31
  • Ritz U, Momburg F, Pilch H, Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int J Oncol 2001;19:1211-20
  • Cabrera CM, Jimenez P, Cabrera T, Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens 2003;61:211-19
  • Kershaw MH, Westwood JA, Parker LL, A Phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006;12:6106-15
  • Lamers CH, Sleijfer S, Vulto AG, Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006;24:e20-2
  • Till BG, Jensen MC, Wang J, Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008;112:2261-71
  • Suntharalingam G, Perry MR, Ward S, Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006;355:1018-28
  • Wiseman GA, Leigh B, Erwin WD, Radiation dosimetry results for Zevalin radioimmunotherapy of rituximab-refractory non-Hodgkin lymphoma. Cancer 2002;94(Suppl 4):1349-57
  • Zelenetz AD. A clinical and scientific overview of tositumomab and iodine I 131 tositumomab. Semin Oncol 2003;30(2 Suppl 4):22-30
  • Sievers EL, Larson RA, Stadtmauer EA, Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001;19(13):3244-54
  • Oh S, Stish BJ, Sachdev D, A novel reduced immunogenicity bispecific targeted toxin simultaneously recognizing human epidermal growth factor and interleukin-4 receptors in a mouse model of metastatic breast carcinoma. Clin Cancer Res 2009;15:6137-47
  • Perez P, Hoffman RW, Shaw S, Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 1985;316:354-6
  • Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature 1985;314:628-31
  • Staerz UD, Bevan MJ. Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA 1986;83:1453-7
  • Milstein C, Cuello AC. Hybrid hybridomas and their use in immunohistochemistry. Nature 1983;305:537-40
  • Suresh MR, Cuello AC, Milstein C. Bispecific monoclonal antibodies from hybrid hybridomas. Meth Enzymol 1986;121:210-28
  • Lindhofer H, Mocikat R, Steipe B, Thierfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 1995;155:219-25
  • Mezzanzanica D, Canevari S, Menard S, Human ovarian carcinoma lysis by cytotoxic T cells targeted by bispecific monoclonal antibodies: analysis of the antibody components. Int J Cancer 1988;41:609-15
  • Glennie MJ, McBride HM, Worth AT, Stevenson GT. Preparation and performance of bispecific F(ab′ gamma)2 antibody containing thioether-linked Fab′ gamma fragments. J Immunol 1987;139:2367-75
  • Merchant AM, Zhu Z, Yuan JQ, An efficient route to human bispecific IgG. Nat Biotechnol 1998;16:677-81
  • de Kruif J, Logtenberg T. Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic antibody phage display library. J Biol Chem 1996;271:7630-4
  • Kostelny SA, Cole MS, Tso JY. Formation of a bispecific antibody by the use of leucine zippers. J Immunol 1992;148:1547-53
  • Muller KM, Arndt KM, Strittmatter W, Pluckthun A. The first constant domain (CH1 and CL) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett 1998;422:259-64
  • Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 1993;90:6444-8
  • Holliger P, Brissinck J, Williams RL, Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng 1996;9:299-305
  • Kipriyanov SM, Moldenhauer G, Schuhmacher J, Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 1999;293:41-56
  • Mallender WD, Voss EW Jr. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem 1994;269:199-206
  • Gruber M, Schodin BA, Wilson ER, Kranz DM. Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J Immunol 1994;152:5368-74
  • Kipriyanov SM, Moldenhauer G, Braunagel M, Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. J Mol Biol 2003;330:99-111
  • Schlatter S, Stansfield SH, Dinnis DM, On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol Prog 2005;21:122-33
  • Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev 2006;58:671-85
  • Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci USA 1995;92:7021-5
  • Korn T, Nettelbeck DM, Volkel T, Recombinant bispecific antibodies for the targeting of adenoviruses to CEA-expressing tumour cells: a comparative analysis of bacterially expressed single-chain diabody and tandem scFv. J Gene Med 2004;6:642-51
  • Asano R, Ikoma K, Shimomura I, Cytotoxic enhancement of a bispecific diabody by format conversion to tandem single-chain variable fragment (taFv): the case of the hEx3 diabody. J Biol Chem 2011;286:1812-18
  • Moran N. Boehringer splashes out on bispecific antibody platforms. Nat Biotechnol 2011;29:5-6
  • Moore PA, Zhang W, Rainey GJ, Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood 2011; Published online February 22, 2011; DOI 10.1182/blood-2010-09-306449
  • James ND, Atherton PJ, Jones J, A phase II study of the bispecific antibody MDX-H210 (anti-HER2 × CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer 2001;85:152-6
  • Deo YM, Sundarapandiyan K, Keler T, Bispecific molecules directed to the Fc receptor for IgA (FcalphaRI, CD89) and tumor antigens efficiently promote cell-mediated cytotoxicity of tumor targets in whole blood. J Immunol 1998;160:1677-86
  • Weiner LM, Clark JI, Davey M, Phase I trial of 2B1, a bispecific monoclonal antibody targeting c-erbB-2 and FcgammaRIII. Cancer Res 1995;55:4586-93
  • Hartmann F, Renner C, Jung W, Treatment of refractory Hodgkin's disease with an anti-CD16/CD30 bispecific antibody. Blood 1997;89:2042-7
  • Hartmann F, Renner C, Jung W, Anti-CD16/CD30 bispecific antibody treatment for Hodgkin's disease: role of infusion schedule and costimulation with cytokines. Clin Cancer Res 2001;7:1873-81
  • Demanet C, Brissinck J, De Jonge J, Thielemans K. Bispecific antibody-mediated immunotherapy of the BCL1 lymphoma: increased efficacy with multiple injections and CD28-induced costimulation. Blood 1996;87:4390-8
  • Titus JA, Garrido MA, Hecht TT, Human T cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice. J Immunol 1987;138:4018-22
  • Weiner GJ, Hillstrom JR. Bispecific anti-idiotype/anti-CD3 antibody therapy of murine B cell lymphoma. J Immunol 1991;147:4035-44
  • Renner C, Jung W, Sahin U, Cure of xenografted human tumors by bispecific monoclonal antibodies and human T cells. Science 1994;264:833-5
  • Kipriyanov SM, Moldenhauer G, Strauss G, Little M. Bispecific CD3 × CD19 diabody for T cell-mediated lysis of malignant human B cells. Int J Cancer 1998;77:763-72
  • Cochlovius B, Kipriyanov SM, Stassar MJ, Cure of Burkitt's lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 × CD19 tandem diabody, and CD28 costimulation. Cancer Res 2000;60:4336-41
  • Zhu Z, Zapata G, Shalaby R, High level secretion of a humanized bispecific diabody from Escherichia coli. Biotechnology 1996;14:192-6
  • Kroesen BJ, Buter J, Sleijfer DT, Phase I study of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin 2. Br J Cancer 1994;70:652-61
  • De Gast GC, Van Houten AA, Haagen IA, Clinical experience with CD3 × CD19 bispecific antibodies in patients with B cell malignancies. J Hematother 1995;4:433-7
  • Loffler A, Kufer P, Lutterbuse R, A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000;95:2098-103
  • Kufer P, Mack M, Gruber R, Construction and biological activity of a recombinant bispecific single-chain antibody designed for therapy of minimal residual colorectal cancer. Cancer Immunol Immunother 1997;45:193-7
  • Mack M, Gruber R, Schmidt S, Biologic properties of a bispecific single-chain antibody directed against 17-1A (EpCAM) and CD3: tumor cell-dependent T cell stimulation and cytotoxic activity. J Immunol 1997;158:3965-70
  • Bargou R, Leo E, Zugmaier G, Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008;321:974-7
  • Dreier T, Baeuerle PA, Fichtner I, T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol 2003;170:4397-402
  • Schlereth B, Kleindienst P, Fichtner I, Potent inhibition of local and disseminated tumor growth in immunocompetent mouse models by a bispecific antibody construct specific for Murine CD3. Cancer Immunol Immunother 2006;55:785-96
  • Brischwein K, Schlereth B, Guller B, MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol 2006;43:1129-43
  • Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 2009;69:4941-4
  • Handgretinger R, Zugmaier G, Henze G, Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. Leukemia 2011;25:181-4
  • Fiedler W, Ritter B, Seggewiss R, Phase I safety and pharmacology study of the EpCAM/CD3-bispecific BiTE antibody MT110 in patients with metastatic colorectal, gastric, or lung cancer. 2010 ASCO Annual Meeting Proceedings (Post-Meeting Edition). J Clin Oncol 2010;28(Suppl 15):2573
  • Offner S, Hofmeister R, Romaniuk A, Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol 2006;43:763-71
  • Haas C, Krinner E, Brischwein K, Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 2009;214:441-53
  • Miescher S, Whiteside TL, Carrel S, von Fliedner V. Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol 1986;136:1899-907
  • Schlereth B, Fichtner I, Lorenczewski G, Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. Cancer Res 2005;65:2882-9
  • Hoffmann P, Hofmeister R, Brischwein K, Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 2005;115:98-104
  • Dreier T, Lorenczewski G, Brandl C, Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002;100:690-7
  • Baeuerle PA, Kufer P, Bargou R. BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 2009;11:22-30
  • Brischwein K, Parr L, Pflanz S, Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother 2007;30:798-807
  • Ehrlich P. Collected studies on immunity. 1st edition. John Wiley & Sons, New York; 1906
  • Nolan O, O'Kennedy R. Bifunctional antibodies: concept, production and applications. Biochimica et Biophysica Acta 1990;1040:1-11
  • Choi BD, Archer GE, Mitchell DA, EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol 2009;19:713-23
  • de Vries HE, Kuiper J, de Boer AG, The blood–brain barrier in neuroinflammatory diseases. Pharmacol Rev 1997;49:143-55
  • Johansson DX, Drakenberg K, Hopmann KH, Efficient expression of recombinant human monoclonal antibodies in Drosophila S2 cells. J Immunol Methods 2007;318:37-46
  • Kufer P, Lutterbuse R, Baeuerle PA. A revival of bispecific antibodies. Trends Biotechnol 2004;22:238-44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.