537
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Immunotherapy targeting glioma stem cells – insights and perspectives

, , , , , & show all
Pages 165-178 | Published online: 26 Dec 2011

Bibliography

  • Paulino AC, Teh BS. Treatment of brain tumors. N Engl J Med 2005;352:2350-3
  • Stupp R, Weber DC. The role of radio- and chemotherapy in glioblastoma. Onkologie 2005;28:315-17
  • Friedman HS, Prados MD, Wen PY, Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009;27:4733-40
  • Vredenburgh JJ, Desjardins A, Herndon JE II, Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007;25:4722-9
  • Vredenburgh JJ, Desjardins A, Herndon JE II, Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13:1253-9
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol 2003;65:3-13
  • Clarke MF, Dick JE, Dirks PB, Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006;66:9339-44
  • Singh SK, Clarke ID, Terasaki M, Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821-8
  • Singh SK, Hawkins C, Clarke ID, Identification of human brain tumour initiating cells. Nature 2004;432:396-401
  • Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008;12:374-90
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730-7
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983-8
  • Ji J, Black KL, Yu JS. Glioma stem cell research for the development of immunotherapy. Neurosurg Clin N Am 2010;21:159-66
  • Ignatova TN, Kukekov VG, Laywell ED, Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002;39:193-206
  • Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004;101:781-6
  • Boon T, Coulie PG, Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today 1997;18:267-8
  • Dunning NL, Laversin SA, Miles AK, Rees RC. Immunotherapy of prostate cancer: should we be targeting stem cells and EMT? Cancer Immunol Immunother 2011;60:1181-93
  • Yu JS, Wheeler CJ, Zeltzer PM, Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001;61:842-7
  • Wheeler CJ, Black KL, Liu G, Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 2008;68:5955-64
  • Galli R, Binda E, Orfanelli U, Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004;64:7011-21
  • Colleoni F, Torrente Y. The new challenge of stem cell: brain tumour therapy. Cancer Lett 2008;272:1-11
  • Yuan X, Curtin J, Xiong Y, Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2004;23:9392-400
  • Ghods AJ, Irvin D, Liu G, Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 2007;25:1645-53
  • Woodward WA, Sulman EP. Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 2008;27:459-70
  • Vassilopoulos A, Wang RH, Petrovas C, Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. Int J Biol Sci 2008;4:133-42
  • Vermeulen L, Todaro M, de Sousa Mello F, Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 2008;105:13427-32
  • O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106-10
  • Ginestier C, Hur MH, Charafe-Jauffret E, ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007;1:555-67
  • Miraglia S, Godfrey W, Yin AH, A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997;90:5013-21
  • Yin AH, Miraglia S, Zanjani ED, AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90:5002-12
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111-15
  • Collins AT, Berry PA, Hyde C, Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946-51
  • Hermann PC, Huber SL, Herrler T, Distinct populations of cancer stem cells determines tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007;1:313-23
  • Herrera MB, Bruno S, Buttiglieri S, Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006;24:2840-50
  • Beier D, Wischhusen J, Dietmaier W, CD133 expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathol 2008;18:370-7
  • Bidlingmaier S, Zhu X, Liu B. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl) 2008;86:1025-32
  • Kemper K, Sprick MR, de Bree M, The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 2010;70:719-29
  • Bao S, Wu Q, McLendon RE, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756-60
  • Liu G, Yuan X, Zeng Z, Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006;5:67-78
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-11
  • Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005;5:311-21
  • Lee DY, Gutmann DH. Cancer stem cells and brain tumors: uprooting the bad seeds. Expert Rev Anticancer Ther 2007;7:1581-90
  • Cheng JX, Liu BL, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 2009;35:403-8
  • Barcelos LS, Duplaa C, Krankel N, Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 2009;104:1095-102
  • Wang J, Sakariassen PØ, Tsinkalovsky O, CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 2008;122:761-8
  • Beier D, Hau P, Proescholdt M, CD133+ and CD133– glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007;67:4010-15
  • Yan X, Ma L, Yi D, A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proc Natl Acad Sci USA 2011;108:1591-6
  • Rathjen FG, Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J 1984;3:1-10
  • Moos M, Tacke R, Scherer H, Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 1988;334:701-3
  • Gutwein P, Mechtersheimer S, Riedle S, ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J 2003;17:292-4
  • Montgomery AM, Becker JC, Siu CH, Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alphavbeta3. J Cell Biol 1996;132:475-85
  • Hortsch M. Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 2000;15:1-10
  • Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 2007;10:19-26
  • Tsuzuki T, Izumoto S, Ohnishi T, Neural cell adhesion molecule L1 in gliomas: correlation with TGF-beta and p53. J Clin Pathol 1998;51:13-17
  • Ohnishi T, Matsumura H, Izumoto S, A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 1998;58:2935-40
  • Mechtersheimer S, Gutwein P, Agmon-Levin N, Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 2001;155:661-73
  • Bao S, Wu Q, Li Z, Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 2008;68:6043-8
  • Opipari AW Jr, Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990;265:14705-8
  • Wertz IE, O'Rourke KM, Zhou H, De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004;430:694-9
  • Boone DL, Turer EE, Lee EG, The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004;5:1052-60
  • Krikos A, Laherty CD, Dixit VM. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappaB elements. J Biol Chem 1992;267:17971-6
  • Sarma V, Lin Z, Clark L, Activation of the B-cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis. J Biol Chem 1995;270:12343-6
  • Honma K, Tsuzuki S, Nakagawa M, TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009;114:2467-75
  • Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009;30:383-91
  • Guo Q, Dong H, Liu X, A20 is overexpressed in glioma cells and may serve as a potential therapeutic target. Expert Opin Ther Targets 2009;13:733-41
  • Hjelmeland AB, Wu Q, Wickman S, Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol 2010;8:e1000319
  • Al-Hajj M, Becker MW, Wicha M, Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004;14:43-7
  • Herrlinger U, Kramm CM, Johnston KM, Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 1997;4:345-52
  • Sobol RE, Fakhrai H, Shawler D, Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther 1995;2:164-7
  • Sagar D, Foss C, El Baz R, Mechanisms of dendritic cell trafficking across the blood-brain barrier. J Neuroimmune Pharmacol 2011; [Epub ahead of print. Published online 6 August 2011; doi: 10.1007/s11481-011-9302-7]
  • Akasaki Y, Black KL, Yu JS. Dendritic cell-based immunotherapy for malignant gliomas. Expert Rev Neurother 2005;5:497-508
  • Gilboa E. DC-based cancer vaccines. J Clin Invest 2007;117:1195-203
  • Luptrawan A, Liu G, Yu JS. Dendritic cell immunotherapy for malignant gliomas. Rev Recent Clin Trials 2008;3:10-21
  • Hsu FJ, Benike C, Fagnoni F, Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52-8
  • Hung K, Hayashi R, Lafond-Walker A, The central role of CD4+ T cells in the antitumor immune response. J Exp Med 1998;188:2357-68
  • Pellegatta S, Poliani PL, Corno D, Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 2006;66:10247-52
  • Xu Q, Liu G, Yuan X, Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 2009;27:1734-40
  • Di Tomaso T, Mazzoleni S, Wang E, Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 2010;16:800-13
  • Avril T, Vauleon E, Hamlat A, Human glioblastoma stem-like cells are more sensitive to allogeneic NK and T cell-mediated killing compared with serum-cultured glioblastoma cells. Brain Pathol 2011; [Epub ahead of print. Published online 16 September 2011; doi: 10.1111/j.1750-3639.2011.00515.x]
  • Kershaw MH, Westwood JA, Hwu P. Dual-specific T cells combine proliferation and antitumor activity. Nat Biotechnol 2002;20:1221-7
  • Maher S, Toomey D, Condron C, Bouchier-Hayes D. Activation-induced cell death: the controversial role of Fas and Fas ligand in immune privilege and tumour counterattack. Immunol Cell Biol 2002;80:131-7
  • Ahmed N, Salsman VS, Kew Y, HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 2010;16:474-85
  • Maes W, Rosas GG, Verbinnen B, DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 2009;11:529-42
  • Grauer OM, Sutmuller RP, van Maren W, Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 2008;122:1794-802
  • Waldmann TA. Immunotherapy: past, present and future. Nat Med 2003;9:269-77
  • Deonarain MP, Kousparou CA, Epenetos AA. Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 2009;1:12-25
  • Sathornsumetee S, Desjardins A, Vredenburgh JJ, Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 2010;12:1300-10
  • Casaco A, Lopez G, Garcia I, Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188Re in adult recurrent high-grade glioma. Cancer Biol Ther 2008;7:333-9
  • Rossig C, Brenner MK. Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther 2004;10:5-18
  • Ohno M, Natsume A, Ichiro Iwami K, Retrovirally engineered T-cell-based immunotherapy targeting type III variant epidermal growth factor receptor, a glioma-associated antigen. Cancer Sci 2010;101:2518-24
  • Wang CH, Chiou SH, Chou CP, Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 2010;7:69-79
  • Bao S, Wu Q, Sathornsumetee S, Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006;66:7843-78488
  • Soeda A, Inagaki A, Oka N, Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 2008;283:10958-66
  • Ricci-Vitiani L, Pallini R, Biffoni M, Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010;468:824-8
  • Reardon DA, Wen PY, Desjardins A, Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 2008;8:541-53
  • Folkins C, Man S, Xu P, Anticancer therapies combining antiangiogenic and tumour cell cytotoxic effects reduce the tumour stem-like cell fraction in glioma xenograft tumours. Cancer Res 2007;67:3560-4
  • Calabrese C, Poppleton H, Kocak M, A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69-82
  • Wang R, Chadalavada K, Wilshire J, Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010;468:829-33
  • Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007;23:675-99
  • Stockhausen MT, Kristoffersen K, Poulsen HS. The functional role of Notch signaling in human gliomas. Neuro Oncol 2010;12:199-211
  • Flores DG, Ledur PF, Abujamra AL, Cancer stem cells and the biology of brain tumors. Curr Stem Cell Res Ther 2009;4:306-13
  • Wang J, Wang C, Meng Q, Yao W.et al. siRNA targeting Notch-1 decreases glioma stem cell proliferation and tumor growth. Mol Biol Rep 2011; [Epub ahead of print. Published online 12 June 2011; doi: 10.1007/s11033-011-1001-1]
  • Mimeault M, Batra SK. Interplay of distinct growth factors during epithelial mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann Oncol 2007;18:1605-19
  • Bar EE, Chaudhry A, Lin A, Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007;25:2524-33
  • Choi C, Gillespie GY, Van Wagoner NJ, Benveniste EN. Fas engagement increases expression of interleukin-6 in human glioma cells. J Neurooncol 2002;56:13-19
  • Tchirkov A, Khalil T, Chautard E, Interleukin-6 gene amplification and shortened survival in glioblastoma patients. Br J Cancer 2007;96:474-6
  • Wang H, Lathia JD, Wu Q, Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 2009;27:2393-404
  • Wheeler CJ, Das A, Liu G, Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 2004;10:5316-26
  • Elbashir SM, Harborth J, Lendeckel W, Duplexes of 21-nucleotide RNAs mediates RNA interference in cultured mammalian cells. Nature 2001;411:494-8
  • Asadi-Moghaddam K, Chiocca EA, Lawler SE. Potential role of miRNAs and their inhibitors in glioma treatment. Expert Rev Anticancer Ther 2010;10:1753-62
  • Kota J, Chivukula RR, O'Donnell KA, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009;137:1005-17
  • Papapetroul EP, Kovalovsky D, Beloeil L, Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras. J Clin Invest 2009;119:157-68
  • Holmstrøm K, Pedersen AW, Claesson MH, Identification of a microRNA signature in dendritic cell vaccines for cancer immunotherapy. Hum Immunol 2010;71:67-73

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.