541
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Using bacteria to treat diseases

&
Pages 701-712 | Published online: 14 Apr 2012

Bibliography

  • WHO World Malaria Report 2011. Available from: www.whoint/malaria/world_malaria_report_2011
  • Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol 2008;62:71-92
  • Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 2010;118:1507-14
  • Rodhain F, Rosen L. Mosquito vectors and dengue virus-vector relationships. In: Gubler DJ, Kuno G, editors. Dengue and Dengue Hemorrhagic Fever. CAB International; Wallingford, UK: 1997. p. 45-60
  • Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol 2004;18:215-27
  • Curtis CF. Insecticide resistance and mosquito-borne disease. Lancet 2001;357:656
  • Schneeweiss A, Chabierski S, Salomo M, A DNA vaccine encoding the E protein of West Nile virus is protective and can be boosted by recombinant domain DIII. Vaccine 2011;29:6352-7
  • Snow RW, Marsh K. Malaria in Africa: progress and prospects in the decade since the Abuja declaration. Lancet 2010;376:137-9
  • Greenwood B. Immunological correlates of protection for the RTS,S candidate malaria vaccine. Lancet Infect Dis 2011;11:75-6
  • Arevalo-Herrera M, Chitnis C, Herrera S. Current status of Plasmodium vivax vaccine. Hum Vaccin 2010;6:124-32
  • Roestenberg M, Teirlinck AC, McCall MB, Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 2011;377:1770-6
  • Tolou HJ, Couissinier-Paris P, Durand JP, Evidence for recombination in natural populations of dengue virus type 1 based on the analysis of complete genome sequences. J Gen Virol 2001;82:1283-90
  • Danko JR, Beckett CG, Porter KR. Development of dengue DNA vaccines. Vaccine 2011;29:7261-6
  • Clements DE, Coller BA, Lieberman MM, Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine 2010;28:2705-15
  • Zheng Q, Fan D, Gao N, Evaluation of a DNA vaccine candidate expressing prM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) in immunogenicity and protection. Vaccine 2011;29:763-71
  • Thomas SJ, Endy TP. Critical issues in dengue vaccine development. Curr Opin Infect Dis 2011;24:442-50
  • Roberts DR, Manguin S, Mouchet J. DDT house spraying and re-emerging malaria. Lancet 2000;356:330-2
  • Norris LC, Norris DE. Efficacy of long-lasting insecticidal nets in use in Macha, Zambia, against the local Anopheles arabiensis population. Malar J 2011;10:254
  • Esu E, Lenhart A, Smith L, Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop Med Int Health 2010;15:619-31
  • Vargas-Teran M, Hursey BS, Cunningham EP. Eradication of the screwworm from Libya using the sterile insect technique. Parasitol Today 1994;10:119-22
  • Hendrichs J, Franz G, Rendon P. Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of mediterranean fruit-flies during fruiting seasons. J Appl Entomol 1995;119:371-7
  • Takken W, Oladunmade MA, Dengwat L, The eradication of glossina-palpalis-palpalis (Robineau-Desvoidy) (Diptera, Glossinidae) using traps, insecticide-impregnated targets and the sterile insect technique in Central Nigeria. Bull Entomol Res 1986;76:275-86
  • Politzar H, Cuisance D. An integrated campaign against riverine tsetse, glossina-palpalis-gambiensis and glossina-tachinoides, by trapping, and the release of sterile males. Insect Sci Appl 1984;5:439-42
  • Benedict MQ, Robinson AS. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 2003;19:349-55
  • Lofgren CS, Dame DA, Breeland SG, Release of chemosterilized males for control of Anopheles albimanus in El-Salvador. 3. Field methods and population-control. Am J Trop Med Hyg 1974;23:288-97
  • Bellini R, Albieri A, Balestrino F, Dispersal and survival of Aedes albopictus (Diptera: culicidae) males in Italian urban areas and significance for sterile insect technique application. J Med Entomol 2010;47:1082-91
  • Yakob L, Alphey L, Bonsall MB. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol 2008;45:1258-65
  • Thome RCA, Yang HM, Esteva L. Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math Biosci 2010;223:12-23
  • Catteruccia F, Crisanti A, Wimmer EA. Transgenic technologies to induce sterility. Malar J 2009;8:S7
  • Thomas DD, Donnelly CA, Wood RJ, Insect population control using a dominant, repressible, lethal genetic system. Science 2000;287:2474-6
  • Alphey L, Beard CB, Billingsley P, Malaria control with genetically manipulated insect vectors. Science 2002;298:119-21
  • Harris AF, Nimmo D, McKemey AR, Field performance of engineered male mosquitoes. Nat Biotechnol 2011;29:1034-7
  • Horn C, Wimmer EA. A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 2003;21:64-70
  • Windbichler N, Menichelli M, Papathanos PA, A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 2011;473:212-15
  • Burt A, Koufopanou V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 2004;14:609-15
  • Mathur G, Sanchez-Vargas I, Alvarez D, Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 2010;19:753-63
  • Franz AW, Sanchez-Vargas I, Adelman ZN, Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 2006;103:4198-203
  • Ito J, Ghosh A, Moreira LA, Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 2002;417:452-5
  • Moreira LA, Ito J, Ghosh A, Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 2002;277:40839-43
  • Dong Y, Das S, Cirimotich C, Engineered anopheles immunity to Plasmodium infection. PLoS Pathog 2011;7:e1002458
  • Yamamoto DS, Nagumo H, Yoshida S. Flying vaccinator; a transgenic mosquito delivers a Leishmania vaccine via blood feeding. Insect Mol Biol 2010;19:391-8
  • Scott TW, Takken W, Knols BG, The ecology of genetically modified mosquitoes. Science 2002;298:117-19
  • Knols BG, Bossin HC, Mukabana WR, Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world. Am J Trop Med Hyg 2007;77:232-42
  • Marti GA, Azpelicueta MDM, Tranchida MC, Predation efficiency of indigenous larvivorous fish species on Culex pipiens L. larvae (Diptera : culicidae) in drainage ditches in Argentina. J Vector Ecol 2006;31:102-6
  • Howard AF, Zhou G, Omlin FX. Malaria mosquito control using edible fish in western Kenya: preliminary findings of a controlled study. BMC Public Health 2007;7:199
  • Ohba SY, Huynh TTT, Kawada H, Heteropteran insects as mosquito predators in water jars in southern Vietnam. J Vector Ecol 2011;36:170-4
  • Marten GG, Reid JW. Cyclopoid copepods. J Am Mosq Control 2007;23:65-92
  • Vu SN, Nguyen TY, Kay BH, Eradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. Am J Trop Med Hyg 1998;59:657-60
  • Vu SN, Nguyen TY, Tran VP, Elimination of dengue by community programs using Mesocyclops (Copepoda) against Aedes aegypti in central Vietnam. Am J Trop Med Hyg 2005;72:67-73
  • Andreadis TG. Microsporidian parasites of mosquitoes. J Am Mosq Control 2007;23:3-29
  • Rasgon JL. Using infections to fight infections: paratransgenic fungi can block malaria transmission in mosquitoes. Future Microbiol 2011;6:851-3
  • Howard AFV, N'Guessan R, Koenraadt CJM, First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions. Malar J 2011;10:S7
  • Mnyone LL, Kirby MJ, Mpingwa MW, Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: effect of host age and blood-feeding status. Parasitol Res 2011;108:317-22
  • Darbro JM, Thomas MB. Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Am J Trop Med Hyg 2009;80:992-7
  • Lacey LA. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 2007;23:133-63
  • Armengol G, Hernandez J, Velez JG, Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: culicidae) control. J Econ Entomol 2006;99:1590-5
  • Novak RJ, Gubler DJ, Underwood D. Evaluation of slow-release formulations of temephos (Abate) and Bacillus thuringiensis var. israelensis for the control of Aedes aegypti in Puerto Rico. J Am Mosq Control Assoc 1985;1:449-53
  • Ritchie SA, Rapley LP, Benjamin S. Bacillus thuringiensis var. israelensis (Bti) provides residual control of Aedes aegypti in small containers. Am J Trop Med Hyg 2010;82:1053-9
  • Gomez-Dantes H, Willoquet JR. Dengue in the Americas: challenges for prevention and control. Cad Saude Publica 2009;25(Suppl 1):S19-31
  • Berry C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J Invert Pathol 2012;109:1-10
  • Geetha I, Manonmani AM, Prabakaran G. Bacillus amyloliquefaciens: a mosquitocidal bacterium from mangrove forests of Andaman & Nicobar islands, India. Acta Trop 2011;120:155-9
  • Riehle MA, Srinivasan P, Moreira CK, Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol 2003;206:3809-16
  • Dale C, Welburn SC. The endosymbionts of tsetse flies: manipulating host-parasite interactions. Int J Parasitol 2001;31:628-31
  • Beard CB, Mason PW, Aksoy S, Transformation of an insect symbiont and expression of a foreign gene in the Chagas-disease vector Rhodnius prolixus. Am J Trop Med Hyg 1992;46:195-200
  • Dinparast Djadid N, Jazayeri H, Raz A, Identification of the Midgut Microbiota of Anopheles stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS One 2011;6:e28484
  • Crotti E, Damiani C, Pajoro M, Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ Microbiol 2009;11:3252-64
  • Favia G, Ricci I, Damiani C, Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 2007;104:9047-51
  • Bisi DC, Lampe DJ. Secretion of anti-plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol 2011;77:4669-75
  • Riehle MA, Moreira CK, Lampe D, Using bacteria to express and display anti-plasmodium molecules in the mosquito midgut. Int J Parasitol 2007;37:595-603
  • Gonzalez-Ceron L, Santillan F, Rodriguez MH, Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol 2003;40:371-4
  • O'Neill SL. Wolbachia pipientis: symbiont or parasite? Parasitol Today 1995;11:168-9
  • Hilgenboecker K, Hammerstein P, Schlattmann P, How many species are infected with Wolbachia?–A statistical analysis of current data. FEMS Microbiol Lett 2008;281:215-20
  • Yen JH, Barr AR. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 1971;232:657-8
  • Hoffmann AA, Turelli M. Cytoplasmic incompatibility in insects. In: O'Neill SL, Hoffmann AA, Werren JH, editors. Influential Passengers: Inherited Microorganisms and Athropod Reproduction. Oxford University Press; New York: 1997
  • McGraw EA, Merritt DJ, Droller JN, Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci 2001;268:2565-70
  • Lassy CW, Karr TL. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech Dev 1996;57:47-58
  • Landmann F, Orsi GA, Loppin B, Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog 2009;5:e1000343
  • Turelli M, Hoffmann AA. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 1991;353:440-2
  • Riegler M, Sidhu M, Miller WJ, Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 2005;15:1428-33
  • Curtis CF, Adak T. Population replacement in Culex fatigans by means of cytoplasmic incompatibility. 1. Laboratory experiments with non-overlapping generations. Bull World Health Organ 1974;51:249-55
  • Atyame CM, Pasteur N, Dumas E, Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the Islands of the South-Western Indian Ocean. Plos Negl Trop Dis 2011;5:e1440
  • Chambers EW, Hapairai L, Peel BA, Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions. Plos Negl Trop Dis 2011;5:e1271
  • Min KT, Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 1997;94:10792-6
  • Brownstein JS, Hett E, O'Neill SL. The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 2003;84:24-9
  • Cook PE, McMeniman CJ, O'Neill SL. Modifying insect population age structure to control vector-borne disease. Adv Exp Med Biol 2008;627:126-40
  • Rasgon JL, Styer LM, Scott TW. Wolbachia-induced mortality as a mechanism to modulate pathogen transmission by vector arthropods. J Med Entomol 2003;40:125-32
  • Sinkins SP, O'Neill SL. Wolbachia as a vehicle to modify insect populations. In: Handler AJA, editor. Insect Trasgenesis: Methods and Applications. CRC Press; Boca Raton: 2000. p. 271-88
  • Hedges LM, Brownlie JC, O'Neill SL, Wolbachia and virus protection in insects. Science 2008;322:702
  • Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 2008;6:e2
  • Xi Z, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005;310:326-8
  • McMeniman CJ, Lane RV, Cass BN, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 2009;323:141-4
  • Walker T, Johnson PH, Moreira LA, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011;476:450-3
  • Walker T, Moreira LA. Can Wolbachia be used to control malaria? Mem Inst Oswaldo Cruz 2011;106(Suppl 1):212-17
  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 2009;139:1268-78
  • Bian G, Xu Y, Lu P, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 2010;6:e1000833
  • Blagrove MS, Arias-Goeta C, Failloux AB, Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci USA 2012;109:255-60
  • Osborne SE, Leong YS, O'Neill SL, Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog 2009;5:e1000656
  • Kambris Z, Cook PE, Phuc HK, Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 2009;326:134-6
  • Rances E, Ye YH, Woolfit M, The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 2012;8:e1002548
  • Sinkins SP, Braig HR, O'Neill SL. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci 1995;261:325-30
  • Turelli M. Cytoplasmic incompatibility in populations with overlapping generations. Evolution Int J Org Evolution 2010;64:232-41
  • McMeniman CJ, O'Neill SL. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. Plos Negl Trop Dis 2010;4:e748
  • Ritchie SA, Johnson PH, Freeman AJ, A secure semi-field system for the study of Aedes aegypti. Plos Negl Trop Dis 2011;5:e988
  • Hoffmann AA, Montgomery BL, Popovici J, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011;476:454-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.