1,431
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Designing immunoconjugates for cancer therapy

, PhD & , ScD MD
Pages 873-890 | Published online: 11 Jun 2012

Bibliography

  • Sharkey RM, Goldenberg DM. Cancer radioimmunotherapy. Immunotherapy 2011;3:349-70
  • Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res 2011;17:6406-16
  • Goldenberg DM, Sharkey RM. Novel radiolabeled antibody conjugates. Oncogene 2007;26:3734-44
  • Katz J, Janik JE, Younes A. Brentuximab Vedotin (SGN-35). Clin Cancer Res 2011;17:6428-36
  • LoRusso PM, Weiss D, Guardino E, Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 2011;17:6437-47
  • Ricart AD. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res 2011;17:6417-27
  • Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res 2011;17:6389-97
  • Polson AG, Ho WY, Ramakrishnan V. Investigational antibody-drug conjugates for hematological malignancies. Expert Opin Investig Drugs 2011;20:75-85
  • Prabhu S, Boswell CA, Leipold D, Antibody delivery of drugs and radionuclides: factors influencing clinical pharmacology. Ther Deliv 2011;2:769-91
  • Sapra P, Hooper AT, O'Donnell CJ, Gerber HP. Investigational antibody drug conjugates for solid tumors. Expert Opin Investig Drugs 2011;20:1131-49
  • Iyer U, Kadambi VJ. Antibody drug conjugates - Trojan horses in the war on cancer. J Pharmacol Toxicol Methods 2011;64:207-12
  • Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 2010;21:5-13
  • Alley SC, Okeley NM, Senter PD. Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 2010;14:529-37
  • Carter PJ, Senter PD. Antibody-drug conjugates for cancer therapy. Cancer J 2008;14:154-69
  • Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 2008;41:98-107
  • Kreitman RJ. Immunotoxins for targeted cancer therapy. AAPS J 2006;8:E532-51
  • Trail PA, Willner D, Lasch SJ, Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 1993;261:212-15
  • Tolcher AW, Sugarman S, Gelmon KA, Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 1999;17:478-84
  • Griffiths GL, Mattes MJ, Stein R, Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin Cancer Res 2003;9:6567-71
  • Sapra P, Stein R, Pickett J, Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res 2005;11:5257-64
  • Doronina SO, Toki BE, Torgov MY, Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21:778-84
  • Kaneko T, Willner D, Monkovic I, New hydrazone derivatives of adriamycin and their immunoconjugates–a correlation between acid stability and cytotoxicity. Bioconjug Chem 1991;2:133-41
  • Dubowchik GM, Firestone RA, Padilla L, Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug Chem 2002;13:855-69
  • Kellogg BA, Garrett L, Kovtun Y, Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem 2011;22:717-27
  • Doronina SO, Mendelsohn BA, Bovee TD, Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 2006;17:114-24
  • DiJoseph JF, Popplewell A, Tickle S, Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 2005;54:11-24
  • Hamann PR, Hinman LM, Beyer CF, An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem 2002;13:40-6
  • Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM. Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther 2012;11:224-34
  • Franano FN, Edwards WB, Welch MJ, Duncan JR. Metabolism of receptor targeted 111In-DTPA-glycoproteins: identification of 111In-DTPA-epsilon-lysine as the primary metabolic and excretory product. Nucl Med Biol 1994;21:1023-34
  • Erickson HK, Park PU, Widdison WC, Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 2006;66:4426-33
  • Kovtun YV, Audette CA, Ye Y, Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 2006;66:3214-21
  • Okeley NM, Miyamoto JB, Zhang X, Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res 2010;16:888-97
  • Erickson HK, Widdison WC, Mayo MF, Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem 2010;21:84-92
  • Sun X, Widdison W, Mayo M, Design of antibody-maytansinoid conjugates allows for efficient detoxification via liver metabolism. Bioconjug Chem 2011;22:728-35
  • Oflazoglu E, Stone IJ, Gordon K, Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res 2008;14:6171-80
  • Polson AG, Calemine-Fenaux J, Chan P, Antibody-drug conjugates for the treatment of non-Hodgkin's lymphoma: target and linker-drug selection. Cancer Res 2009;69:2358-64
  • Polson AG, Yu SF, Elkins K, Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood 2007;110:616-23
  • Polson AG, Williams M, Gray AM, Anti-CD22-MCC-DM1: an antibody-drug conjugate with a stable linker for the treatment of non-Hodgkin's lymphoma. Leukemia 2010;24:1566-73
  • Hamann PR, Hinman LM, Hollander I, Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 2002;13:47-58
  • Govindan SV, Cardillo TM, Tat F, Optimal Cleavable linker for antibody-SN-38 conjugates for cancer therapy: impact of linker's stability on efficacy [abstract 2526]. Proc Am Assoc Cancer Res 2012;53:611
  • Govindan SV, Cardillo TM, Moon SJ, CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res 2009;15:6052-61
  • Cardillo TM, Govindan SV, Sharkey RM, Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res 2011;17:3157-69
  • Sharkey RM, Karacay H, Govindan SV, Goldenberg DM. Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther 2011;10:1072-81
  • Derwin D, Passmore D, Sung J, Activation of antibody drug conjugate MDX-1203 by human carboxylesterase 2 [abstract 2575]. Proc Am Assoc Cancer Res 2010;51:624
  • Hamblett KJ, Senter PD, Chace DF, Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 2004;10:7063-70
  • Sun MM, Beam KS, Cerveny CG, Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 2005;16:1282-90
  • McDonagh CF, Turcott E, Westendorf L, Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 2006;19:299-307
  • Doronina SO, Bovee TD, Meyer DW, Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem 2008;19:1960-3
  • Stein R, Govindan SV, Mattes MJ, Improved iodine radiolabels for monoclonal antibody therapy. Cancer Res 2003;63:111-18
  • Junutula JR, Raab H, Clark S, Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 2008;26:925-32
  • Junutula JR, Flagella KM, Graham RA, Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 2010;16:4769-78
  • Sussman D, Torrey L, Westendorf L, Engineered cysteine drug conjugates show potency and improved safety [abstract 4634]. Proc Am Assoc Cancer Res 2012;53:1123
  • Sapra P, Tchistiakova L, Dushin R, Novel site-specific antibody drug conjugates based on novel amino acid incorporation technology have improved pharmaceutical properties over conventional antibody drug conjugates [abstract 5691]. Proc Am Assoc Cancer Res 2012;53:1376
  • Alley SC, Benjamin DR, Jeffrey SC, Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 2008;19:759-65
  • Baldwin AD, Kiick KL. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem 2011;22:1946-53
  • Shen BQ, Xu K, Liu L, Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 2012;30:184-9
  • Younes A, Yasothan U, Kirkpatrick P. Brentuximab vedotin. Nat Rev Drug Discov 2011;11:19-20
  • Lewis Phillips GD, Li G, Dugger DL, Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008;68:9280-90
  • Krop IE, Beeram M, Modi S, Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 2010;28:2698-704
  • Burris HA III, Rugo HS, Vukelja SJ, Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 2011;29:398-405
  • Girish S, Gupta M, Wang B, Clinical pharmacology of trastuzumab emtansine (T-DM1): an antibody-drug conjugate in development for the treatment of HER2-positive cancer. Cancer Chemother Pharmacol 2012; published online: January 20, 2012; DOI: 10.1007/s00280-011-1817-3
  • Advani A, Coiffier B, Czuczman MS, Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J Clin Oncol 2010;28:2085-93
  • Blanc V, Bousseau A, Caron A, SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res 2011;17:6448-58
  • Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 1978;15:245-50
  • FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res 2011;71:6300-9
  • Li Z, Yu T, Zhao P, Ma J. Immunotoxins and cancer therapy. Cell Mol Immunol 2005;2:106-12
  • Olsen E, Duvic M, Frankel A, Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 2001;19:376-88
  • Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 2011;17:6398-405
  • Weldon JE, Xiang L, Chertov O, A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009;113:3792-800
  • Hassan R, Bullock S, Premkumar A, Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 2007;13:5144-9
  • Onda M, Beers R, Xiang L, Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc Natl Acad Sci USA 2011;108:5742-7
  • Lyu MA, Cao YJ, Mohamedali KA, Rosenblum MG. Cell-targeting fusion constructs containing recombinant gelonin. Methods Enzymol 2012;502:167-214
  • Mohamedali KA, Ran S, Gomez-Manzano C, Cytotoxicity of VEGF(121)/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2. BMC Cancer 2011;11:358
  • Lyu MA, Rai D, Ahn KS, The rGel/BLyS fusion toxin inhibits diffuse large B-cell lymphoma growth in vitro and in vivo. Neoplasia 2010;12:366-75
  • Cao Y, Marks JD, Marks JW, Construction and characterization of novel, recombinant immunotoxins targeting the Her2/neu oncogene product: in vitro and in vivo studies. Cancer Res 2009;69:8987-95
  • Goyal A, Batra JK. Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins. Biochem J 2000;345(Pt 2):247-54
  • Pirie CM, Hackel BJ, Rosenblum MG, Wittrup KD. Convergent potency of internalized gelonin immunotoxins across varied cell lines, antigens, and targeting moieties. J Biol Chem 2011;286:4165-72
  • Cao Y, Marks JD, Huang Q, Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity. Mol Cancer Ther 2012;11:143-53
  • Chang CH, Sapra P, Vanama SS, Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood 2005;106:4308-14
  • Chang CH, Gupta P, Michel R, Ranpirnase (frog RNase) targeted with a humanized, internalizing, anti-Trop-2 antibody has potent cytotoxicity against diverse epithelial cancer cells. Mol Cancer Ther 2010;9:2276-86
  • Rossi EA, Goldenberg DM, Cardillo TM, Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci USA 2006;103:6841-6
  • Rossi EA, Goldenberg DM, Chang CH. The Dock-and-Lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012;23:309-23
  • Rossi EA, Chan E, Cardillo TM, Potent ribonuclease-based immunotoxins comprising quadruple ranpirnase (Rap) site-specifically conjugated to B-cell lymphoma-targeting antibodies [abstract 5345]. Proc Am Assoc Cancer Res 2010;51:1295
  • Cardillo TM, Rossi EA, Arrojo R, A novel immunotoxin comprising quadruple RNase tethered to an internalizing anti-TROP-2 humanized MAb shows potent cytotoxicity against diverse solid tumors in vitro [abstract 5346]. Proc Am Assoc Cancer Res 2010;51:1296
  • Smallshaw JE, Ghetie V, Rizo J, Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat Biotechnol 2003;21:387-91
  • Liu XY, Pop LM, Schindler J, Vitetta ES. Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. MAbs 2012;4:57-68
  • Frey K, Zivanovic A, Schwager K, Neri D. Antibody-based targeting of interferon-alpha to the tumor neovasculature: a critical evaluation. Integr Biol (Camb) 2011;3:468-78
  • Lode HN, Xiang R, Becker JC, Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol Ther 1998;80:277-92
  • Pasche N, Neri D. Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 2012;17:583-90
  • Yamane BH, Hank JA, Albertini MR, Sondel PM. The development of antibody-IL-2 based immunotherapy with hu14.18-IL2 (EMD-273063) in melanoma and neuroblastoma. Expert Opin Investig Drugs 2009;18:991-1000
  • Gillies SD, Lan Y, Hettmann T, A low-toxicity IL-2-based immunocytokine retains antitumor activity despite its high degree of IL-2 receptor selectivity. Clin Cancer Res 2011;17:3673-85
  • Johannsen M, Spitaleri G, Curigliano G, The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur J Cancer 2010;46:2926-35
  • Eigentler TK, Weide B, de BF, A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res 2011;17:7732-42
  • Rossi EA, Goldenberg DM, Cardillo TM, CD20-targeted tetrameric interferon-alpha, a novel and potent immunocytokine for the therapy of B-cell lymphomas. Blood 2009;114:3864-71
  • Rossi EA, Rossi DL, Cardillo TM, Preclinical studies on targeted delivery of multiple IFNalpha2b to HLA-DR in diverse hematologic cancers. Blood 2011;118:1877-84
  • Rossi EA, Rossi DL, Stein R, A bispecific antibody-IFNalpha2b immunocytokine targeting CD20 and HLA-DR is highly toxic to human lymphoma and multiple myeloma cells. Cancer Res 2010;70:7600-9
  • Walter RB, Raden BW, Hong TC, Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 2003;102:1466-73
  • Tang R, Cohen S, Perrot JY, P-gp activity is a critical resistance factor against AVE9633 and DM4 cytotoxicity in leukaemia cell lines, but not a major mechanism of chemoresistance in cells from acute myeloid leukaemia patients. BMC Cancer 2009;9:199
  • Lapusan S, Vidriales MB, Thomas X, Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs 2012;30:1121-31
  • Kovtun YV, Audette CA, Mayo MF, Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res 2010;70:2528-37
  • Morschhauser F, Kraeber-Bodere F, Wegener WA, High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin's lymphoma. J Clin Oncol 2010;28:3709-16
  • Blackwell KL, Miles D, Gianni L, Primary results from EMILIA, a phase III study of trastuzumab emtansine (T-DM1) versus capecitabine (X) and lapatinib (L) in HER2-positive locally advanced or metastatic breast cancer (MBC) previously treated with trastuzumab (T) and a taxane. J Clin Oncol 2012;30: suppl; abstr LBA1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.