557
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Preclinical and clinical data for the use of mesenchymal stem cells in articular cartilage tissue engineering

, , , , & , MD MSc DMed PhD FRCS
Pages 1361-1382 | Published online: 12 Jul 2012

Bibliography

  • National institute of clinical excellence, osteoarthritis, the care and management of osteoarthritis in adults. 2008. Available from: http://www.nice.org.uk/nicemedia/pdf/CG59NICEguideline.pdf [Accessed on 03 December 2011]
  • Malchau H, Herberts P, Eisler T, The swedish total hip replacement register. J Bone Joint Surg Am 2002;84-A(Suppl 2):2-20
  • Brittberg M, Lindahl A, Nilsson A, Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331(14):889-95
  • Bartlett W, Skinner JA, Gooding CR, Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005;87(5):640-5
  • Knutsen G, Engebretsen L, Ludvigsen TC, Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004;86-A(3):455-64
  • Grigolo B, Roseti L, De Franceschi L, Molecular and immunohistological characterization of human cartilage two years following autologous cell transplantation. J Bone Joint Surg Am 2005;87(1):46-57
  • Guo X, Park H, Young S, Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater 2010;6(1):39-47
  • Horas U, Pelinkovic D, Herr G, Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 2003;85-A(2):185-92
  • Gillogly SD, Myers TH, Reinold MM. Treatment of full-thickness chondral defects in the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 2006;36(10):751-64
  • Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30(1):215-24
  • Dell'Accio F, De Bari C, Luyten FP. Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo. Exp Cell Res 2003;287(1):16-27
  • Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004;8(3):301-16
  • Rodrigues MT, Gomes ME, Reis RL. Current strategies for osteochondral regeneration: from stem cells to pre-clinical approaches. Curr Opin Biotechnol 2011;22(5):726-33
  • Pelttari K, Winter A, Steck E, Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in scid mice. Arthritis Rheum 2006;54(10):3254-66
  • Roberts S, Genever P, McCaskie A, De Bari C. Prospects of stem cell therapy in osteoarthritis. Regen Med 2011;6(3):351-66
  • Im GI, Kim DY, Shin JH, Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br 2001;83(2):289-94
  • Katayama R, Wakitani S, Tsumaki N, Repair of articular cartilage defects in rabbits using cdmp1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford) 2004;43(8):980-5
  • Kayakabe M, Tsutsumi S, Watanabe H, Transplantation of autologous rabbit bm-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy 2006;8(4):343-53
  • Koga H, Muneta T, Nagase T, Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008;333(2):207-15
  • Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 2003;48(12):3464-74
  • Park JS, Yang HN, Woo DG, In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng A 2009;15(8):2163-75
  • Shao X, Goh JC, Hutmacher DW, Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 2006;12(6):1539-51
  • Sharma B, Williams CG, Khan M, In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 2007;119(1):112-20
  • Xue D, Zheng Q, Zong C, Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res A 2010;94(1):259-70
  • Yan H, Yu C. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 2007;23(2):178-87
  • Zhou G, Liu W, Cui L, Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng 2006;12(11):3209-21
  • Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 2006;14(2):179-89
  • Motoyama M, Deie M, Kanaya A, In vitro cartilage formation using tgf-beta-immobilized magnetic beads and mesenchymal stem cell-magnetic bead complexes under magnetic field conditions. J Biomed Mater Res A 2010;92(1):196-204
  • Wang Y, Kim UJ, Blasioli DJ, In vitro cartilage tissue engineering with 3d porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005;26(34):7082-94
  • Cheng HW, Luk KD, Cheung KM, Chan BP. In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres. Biomaterials 2011;32(6):1526-35
  • Steck E, Bertram H, Abel R, Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 2005;23(3):403-11
  • Hennig T, Lorenz H, Thiel A, Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered tgfbeta receptor and bmp profile and is overcome by bmp-6. J Cell Physiol 2007;211(3):682-91
  • Mauck RL, Byers BA, Yuan X, Tuan RS. Regulation of cartilaginous ecm gene transcription by chondrocytes and mscs in 3d culture in response to dynamic loading. Biomech Model Mechanobiol 2007;6(1-2):113-25
  • Yoshimura H, Muneta T, Nimura A, Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007;327(3):449-62
  • Shirasawa S, Sekiya I, Sakaguchi Y, In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem 2006;97(1):84-97
  • Farrell E, O'Brien FJ, Doyle P, A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng 2006;12(3):459-68
  • Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng A 2011;17(5-6):831-40
  • Nakajima M, Wakitani S, Harada Y, In vivo mechanical condition plays an important role for appearance of cartilage tissue in es cell transplanted joint. J Orthop Res 2008;26(1):10-17
  • Winter A, Breit S, Parsch D, Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 2003;48(2):418-29
  • Li Q, Tang J, Wang R, Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artif Cells Blood Substit Immobil Biotechnol 2011;39(1):31-8
  • Kuroda R, Ishida K, Matsumoto T, Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007;15(2):226-31
  • Wakitani S, Imoto K, Yamamoto T, Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002;10(3):199-206
  • Wakitani S, Mitsuoka T, Nakamura N, Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 2004;13(5):595-600
  • Kronenberg HM. Developmental regulation of the growth plate. Nature 2003;423(6937):332-6
  • Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 2005;328(3):658-65
  • Pelttari K, Steck E, Richter W. The use of mesenchymal stem cells for chondrogenesis. Injury 2008;39(Suppl 1):S58-65
  • Adams CS, Shapiro IM. The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. Crit Rev Oral Biol Med 2002;13(6):465-73
  • Zhang X, Ziran N, Goater JJ, Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: tgf-beta delays hypertrophy and pge2 inhibits terminal differentiation. Bone 2004;34(5):809-17
  • Hunziker EB, Driesang IM, Morris EA. Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop Relat Res 2001;391(Suppl):S171-81
  • Salter RB, Simmonds DF, Malcolm BW, The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J Bone Joint Surg Am 1980;62(8):1232-51
  • Harada Y, Tomita N, Wakitani S, Use of controlled mechanical stimulation in vivo to induce cartilage layer formation on the surface of osteotomized bone. Tissue Eng 2002;8(6):969-78
  • Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 1994;2(4):192-201
  • Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75(4):532-53
  • Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 1980;62(1):79-89
  • Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am 1976;58(2):230-3
  • Tang QO, Shakib K, Heliotis M, Tgf-beta3: a potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther 2009;9(6):689-701
  • Xia W, Li H, Wang Z, Human platelet lysate supports ex vivo expansion and enhances osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Biol Int 2011;35(6):639-43
  • Zaky SH, Ottonello A, Strada P, Platelet lysate favours in vitro expansion of human bone marrow stromal cells for bone and cartilage engineering. J Tissue Eng Regen Med 2008;2(8):472-81
  • Azouna NB, Jenhani F, Regaya Z, Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther 2012;3(1):6
  • Schallmoser K, Bartmann C, Rohde E, Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 2007;47(8):1436-46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.