647
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Optimizing treatment of metastatic colorectal cancer patients with anti-EGFR antibodies: overcoming the mechanisms of cancer cell resistance

, , , , , & show all
Pages 241-255 | Published online: 03 Jan 2013

Bibliography

  • Sporn MB, Roberts AB. Autocrine growth factors and cancer. Nature 1985;313:745-7
  • Yarden Y. The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001;37:S3-8
  • Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene 2000;19:6550-65
  • Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001;2:127-37
  • Oksvold M, Huitfeldt H, Stang E, Madshus I. Localizing the EGF receptor. Nat Cell Biol 2002;4:E22; author reply E22-3.5
  • Waugh MG, Hsuan JJ. EGF receptors as transcription factors: ridiculous or sublime? Nat Cell Biol 2001;3(9):E209-11
  • Spano JP, Lagorce C, Atlan D, Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 2005;16:102-8
  • Roberts RB, Min L, Washington MK, Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA 2002;99(3):1521-6
  • Galizia G, Lieto E, De Vita F, Cetuximab, a chimeric human mouse anti-epidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer. Oncogene 2007;26:3654-60
  • Ferlay J, Autier P, Boniol M, Estimated of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007;18:581-92
  • Ciardiello F, Tortora G. EGFR antagonist in cancer treatment. N Engl J Med 2008;358:1160-74
  • Normanno N, Bianco C, De Luca A, Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer 2003;10:1-21
  • Saltz L, Meropol NJ, Loehrer PJ, Phase II trial of cetuximab in patients with refractory colorectal cancer that express the epidermal growth factor receptor. J Clin Oncol 2004;22:1201-8
  • Lenz HJ, Van Cutsem E, Khambata-Ford S, Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 2006;24:4914-21
  • Sobrero AF, Maurel J, Fehrenbacher L. EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:2311-19
  • Van Cutsem E, Kohne CH, Hitre E, Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360:1408-17
  • Bokemeyer C, Bondarenko I, Makhson A, Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009;27:663-71
  • Maughan TS, Adams RA, Smith CG, Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 2011;377:2103-14
  • Tveit KM, Guren T, Glimelius B, Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol 2012;30:1755-62
  • Prewett M, Deevi DS, Bassi R, Tumors established with cell lines selected for oxaliplatin resistance respond to oxaliplatin if combined with cetuximab. Clin Cancer Res 2007;13:7432-40
  • Balin-Gauthier D, Delord JP, Pillaire MJ, Cetuximab potentiates oxaliplatin cytotoxic effect through a defect in NER and DNA replication initiation. Br J Cancer 2008;98:120-8
  • Dahan L, Sadok A, Formento JL, Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines. Br J Pharmacol 2009;158:610-20
  • Morgillo F, Cantile F, Fasano M, Resistance mechanisms of tumour cells to EGFR inhibitors. Clin Transl Oncol 2009;11:270-5
  • Lievre A, Bachet JB, Le Corre D, KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006;66:3992-5
  • Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 2007;67:2643-8
  • Lievre A, Bachet JB, Boige V, KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008;26:374-9
  • Karapetis CS, Khambata-Ford S, Jonker DJ, K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008;359:1757-65
  • Amado RG, Wolf M, Peeters M, Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:1626-34
  • European Medicines Agency: Committee for Medicinal Products 614 for Human Use May 2008 Plenary Meeting Monthly Report. Available from: http://www.emea.europa.eu/pdfs/human/press/pr/27923508en. pd
  • De Roock W, Jonker DJ, Di Nicolantonio F, Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 2010;304:1812-20
  • Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 2005;4:677-85
  • Davies H, Bignell GR, Cox C, Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54
  • Rajagopalan H, Bardelli A, Lengauer C, Tumorigenesis: RAF/RAS oncogenes and mismatch repair status. Nature 2002;418:934
  • Di Nicolantonio F, Martini M, Molinari F, Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:5705-12
  • Loupakis F, Ruzzo A, Cremolini C, KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 2009;18:715-21
  • De Roock W, Claes B, Bernasconi D, Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;8:753-62
  • Kopetz S, Desai J, Chan E, PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors [abstract 3534]. J Clin Oncol 2010;28(Suppl):15s
  • Prahallad A, Sun C, Huang S, Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012;483:100-3
  • Sartore-Bianchi A, Martini M, Molinari F, PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 2009;69:1851-7
  • Velho S, Oliveira C, Ferreira A, The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 2005;41:1649-54
  • Souglakos J, Philips J, Wang R, Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer 2009;101:465-72
  • Prenen H, De Schutter J, Jacobs B, PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res 2009;15:3184-8
  • Perrone F, Lampis A, Orsenigo M, PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann. Oncol 2009;20:84-90
  • Misale S, Yaeger R, Hobor S, Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486(7404):532-6
  • Diaz LA JrWilliams RT, Wu J, The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012;486(7404):537-40
  • Gatenby RA, Silva AS, Gillies RJ, Frieden BR. Adaptive therapy. Cancer Res 2009;69(11):4894-903
  • Bertotti A, Migliardi G, Galimi F, A molecularly annotated platform of patient derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov 2011;1:508-23
  • Yonesaka K, Zejnullahu K, Okamoto I, Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med 2011;3(99):99ra86
  • Vecchione L, Jacobs B, Normanno N, EGFR-targeted therapy. Exp Cel Res 2011;317(19):2765-71
  • Burtrum D, Zhu Z, Lu D, A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 2003;63:8912-21
  • Reidy DL, Vakiani E, Fakih MG, Randomized, Phase II Study of the Insulin-Like Growth Factor-1 Receptor Inhibitor IMC-A12, With or Without Cetuximab, in Patients With Cetuximab- or Panitumumab-Refractory Metastatic Colorectal Cancer. J Clin Oncol 2010;28:4240-6
  • Cohen BD, Baker DA, Soderstrom C, Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005;11:2063-73
  • Eng C, Van Cutsem E, Nowara E, Randomized, phase Ib/II trial of rilotumumab (AMG 102; ril) or ganitumab (AMG 479; gan) with panitumumab (pmab) versus pmab alone in patients (pts) with wild-type (WT) KRAS metastatic colorectal cancer (mCRC): primary and biomarker analyses. J Clin Oncol 2011;29(Suppl):abstract 3500
  • Khambata-Ford S, Garrett CR, Meropol NJ, Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007;25(22):3230-7
  • Jacobs B, De Roock W, Piessevaux H, Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol 2009;27:5068-507451
  • Tabernero J, Cervantes A, Rivera F, Pharmacogenomic and pharmacoproteomic studies of cetuximab in metastatic colorectal cancer: biomarker analysis of a phase I dose-escalation study. J. Clin. Oncol 28:1181-9
  • Yang XD, Jia XC, Corvalan JR, Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001;38:1723
  • Rowinsky EK, Schwartz GH, Gollob JA, Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 2004;22:3003-15
  • Tyagi P, Jain V, Chu E, Jain V. Recent results and ongoing trials with panitumumab (ABX-EGF), a fully human anti-epidermal growth factor receptor antibody, in metastatic colorectal cancer. Clin Colorectal Cancer 2005;5:21-3
  • Gibson TB, Ranganathan A, Grothey A. Randomized phase III trial results of panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, in metastatic colorectal cancer. Clin Colorectal Cancer 2006;6:29-31
  • Mateo C, Moreno E, Amour K, Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology 1997;3:71-81
  • Crombet-Ramos T, Rak J, Perez R, Viloria-Petit A. Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: a humanized anti-EGFR antibody. Int J Cancer 2002;101:567-75
  • Kim YH, Sasaki Y, Lee KH, Korea Randomized phase II study of nimotuzumab, an anti-EGFR antibody, plus irinotecan in patients with 5-fluorouracil-based regimen-refractory advanced or recurrent gastric cancer in Korea and Japan: preliminary results. J Clin Oncol 2011;29(Suppl 4):abstract 87
  • Crombet T, Osorio M, Cruz T, Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J Clin Oncol 2004;22:1646-54
  • Kim T. Technology evaluation: matuzumab, Merck KGaA. Curr Opin Mol Ther 2004;6:96-103
  • Rao S, Starling N, Cunningham D, Matuzumab plus epirubicin, cisplatin and capecitabine (ECX) compared with epirubicin, cisplatin and capecitabine alone as first-line treatment in patients with advanced oesophago-gastric cancer: a randomised, multicentre open-label phase II study. Ann Oncol 2010;21(11):2213-19
  • Machiels JP, Subramanian S, Ruzsa A, Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomized phase 3 trial. Lancet Oncol 2011;12(4):333-43
  • Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009;30:5737-50
  • Michaelis M, Bliss J, Arnold S, Cisplatin-resistant neuroblastoma cells express enhanced levels of epidermal growth factor receptor (EGFR) and are sensitive to treatment with EGFR-specific toxins. Clin Cancer Res 2008;14:6531-7
  • Tijink BM, Laeremans T, Budde M, Improved tumor targeting of antiepidermal growth factor receptor nanobodies through albumin binding: taking advantage of modular nanobody technology. Mol Cancer Ther 2008;7:2288-97
  • Bell A, Wang ZJ, Arbabi-Ghahroudi M, Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett 2010;289:81-90
  • Oliveira S, Schiffelers RM, van der Veeken J, Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J Controll Rel 2010;145:165-75
  • Caraglia M, Marra M, Pelaia G, Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol 2005;202(2):323-35; Review
  • Caraglia M, Marra M, Tagliaferri P, Emerging strategies to strengthen the anti-tumour activity of type I interferons: overcoming survival pathways. Curr Cancer Drug Targets 2009;9(5):690-704
  • Tagliaferri P, Tassone P, Blotta S, Antitumor therapeutic strategies based on the targeting of epidermal growth factor-induced survival pathways. Curr Drug Targets 2005;6(3):289-300
  • Murphy K, Travers P, Walport M. The humoral immune response. In: Janeway's immunobiology. 7th edition. Garland Science; New York; 2008
  • Correale P, Cusi MG, Del Vecchio MT, Dendritic cell-mediated cross-presentation of antigens derived from colon carcinoma cells exposed to a highly cytotoxic multidrug regimen with gemcitabine, oxaliplatin, 5-fluorouracil, and leucovorin, elicits a powerful human antigen-specific CTL response with antitumor activity in vitro. J Immunol 2005;175(2):820-8; Erratum in: J Immunol. 2005 Nov 1;175(9):6235
  • Correale P, Messinese S, Caraglia M, Novel biweekly multi-drug regimen of gemcitabine, oxaliplatin, 5-fluorouracil (5-FU), and folinic acid (FA) in pre-treated patients with advanced colorectal carcinoma. Br J Cancer 2004;90:1710-14
  • Basu S, Binder RJ, Suto R, Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappaB pathway. Int Immunology 2000;12:1539-46
  • Shepard HM, Brdlik CM, Schreiber H. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest 2008;118:3574-81
  • Marra M, Salzano G, Leonetti C, Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine 2011;7(6):955-64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.