170
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Cell-based vasculogenic studies in preclinical models of chronic myocardial ischaemia and hibernation

, , , &
Pages 411-428 | Published online: 21 Dec 2012

Bibliography

  • Mackay J, Mensah G. The Atlas of Heart disease and stroke. World Health Organization; Geneva, Switzerland: 2007. p. 48-9
  • Eitzman D, al-Aouar Z, Kanter HL, Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559-65
  • Beanlands RS, Hendry PJ, Masters RG, Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998;98:II51-6
  • Ruel M, Song J, Sellke FW. Protein-, gene-, and cell-based therapeutic angiogenesis for the treatment of myocardial ischemia. Mol Cell Biochem 2004;264:119-31
  • Abdel-Latif A, Bolli R, Tleyjeh IM, Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 2007;167:989-97
  • Wen Y, Meng L, Xie J, Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis. Expert Opin Biol Ther 2011;11:559-67
  • Mestas J and Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol 2004;172:2731-8
  • Ginis I, Luo Y, Miura T, Differences between human and mouse embryonic stem cells. Dev Biol 2004;269:360-80
  • Hughes HC. Swine in cardiovascular research. Lab Anim Sci 1986;36:348-50
  • Rosano GM, Fini M, Caminiti G, Cardiac metabolism in myocardial ischemia. Curr Pharm Des 2008;14:2551-62
  • Canty JM Jr, Suzuki G. Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol 2012;52:822-31
  • Heyndrickx GR, Millard RW, McRitchie RJ, Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978-85
  • Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985;72:V123-35
  • Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 2007;12:307-17
  • Mari C, Strauss WH. Detection and characterization of hibernating myocardium. Nucl Med Commun 2002;23:311-22
  • Depre C, Vatner SF. Mechanisms of cell survival in myocardial hibernation. Trends Cardiovasc Med 2005;15:101-10
  • Borgers M, Ausma J. Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol 1995;90:44-6
  • Borgers M, ThonE F, Wouters L, Structural correlates of regional myocardial dysfunction in patients with critical coronary artery stenosis: chronic hibernation? Cardiovasc Pathol 1993;2:237-45
  • Elsasser A, Schlepper M, Klovekorn WP, Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997;96:2920-31
  • Heusch G. Hibernating myocardium. Physiol Rev 1998;78:1055-85
  • Slezak J, Tribulova N, Okruhlicova L, Hibernating myocardium: pathophysiology, diagnosis, and treatment. Can J Physiol Pharmacol 2009;87:252-65
  • Vogt AM, Elsasser A, Nef H, Increased glycolysis as protective adaptation of energy depleted, degenerating human hibernating myocardium. Mol Cell Biochem 2003;242:101-7
  • Heusch G, Schulz R, Rahimtoola SH. Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 2005;288:H984-99
  • Angelini A, Maiolino G, La Canna G, Relevance of apoptosis in influencing recovery of hibernating myocardium. Eur J Heart Fail 2007;9:377-83
  • Elsasser A, Schaper J. Hibernating myocardium: adaptation or degeneration? Basic Res Cardiol 1995;90:47-8
  • Elsasser A, Vogt AM, Nef H, Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 2004;43:2191-9
  • Camici PG, Dutka DP. Repetitive stunning, hibernation, and heart failure: contribution of PET to establishing a link. Am J Physiol Heart Circ Physiol 2001;280:H929-36
  • Canty JM Jr, Fallavollita JA. Chronic hibernation and chronic stunning: a continuum. J Nucl Cardiol 2000;7:509-27
  • Hughes GC, Landolfo CK, Yin B, Is chronically dysfunctional yet viable myocardium distal to a severe coronary stenosis hypoperfused? Ann Thorac Surg 2001;72:163-8
  • Shukla T, Nichol G, Wells G, Does FDG PET-assisted management of patients with left ventricular dysfunction improve quality of life? A substudy of the PARR-2 trial. Can J Cardiol 2011;28(1):54-61
  • Obrzut S, Jamshidi N, Karimi A, Imaging and modeling of myocardial metabolism. J Cardiovasc Transl Res 2010;3:384-96
  • Partington SL, Kwong RY, Dorbala S. Multimodality imaging in the assessment of myocardial viability. Heart Fail Rev 2011;16:381-95
  • Heusch G, Skyschally A, Schulz R. The in-situ pig heart with regional ischemia/reperfusion – ready for translation. J Mol Cell Cardiol 2011;50:951-63
  • Kobayashi I, Kokita N, Namiki A. Propofol attenuates ischaemia-reperfusion injury in the rat heart in vivo. Eur J Anaesthesiol 2008;25:144-51
  • Kamada N, Kanaya N, Hirata N, Cardioprotective effects of propofol in isolated ischemia-reperfused guinea pig hearts: role of KATP channels and GSK-3beta. Can J Anaesth 2008;55:595-605
  • Humphrey LS, Stinson DC, Humphrey MJ, Volatile anesthetic effects on left ventricular relaxation in swine. Anesthesiology 1990;73:731-8
  • Kehl F, Krolikowski JG, Mraovic B, Is isoflurane-induced preconditioning dose related? Anesthesiology 2002;96:675-80
  • Larsen JR, Aagaard S, Lie RH, Sevoflurane improves myocardial ischaemic tolerance in a closed-chest porcine model. Acta Anaesthesiol Scand 2008;52:1400-10
  • Duncker DJ, Klassen CL, Ishibashi Y, Effect of temperature on myocardial infarction in swine. Am J Physiol 1996;270:H1189-99
  • Sundeman H, Haney M, Broome M, The effects of desflurane on cardiac function as measured by conductance volumetry in swine. Anesth Analg 1998;87:522-8
  • Coetzee A, Fourie P, Coetzee J, Effect of various propofol plasma concentrations on regional myocardial contractility and left ventricular afterload. Anesth Analg 1989;69:473-83
  • McLean DS, Anadiotis AV, Lerakis S. Role of echocardiography in the assessment of myocardial viability. Am J Med Sci 2009;337:349-54
  • Mor-Avi V, Collins KA, Korcarz CE, Detection of regional temporal abnormalities in left ventricular function during acute myocardial ischemia. Am J Physiol Heart Circ Physiol 2001;280:H1770-81
  • Mor-Avi V, Caiani EG, Collins KA, Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation 2001;104:352-7
  • Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation 2008;117:103-14
  • Karabinos I, Kranidis A, Papadopoulos A, Prevalence and potential mechanisms of sustained ventricular arrhythmias during dobutamine stress echocardiography: a literature review. J Am Soc Echocardiogr 2008;21:1376-81
  • Gorcsan J III, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 2011;58:1401-13
  • Hoffmann R, Altiok E, Nowak B, Strain rate analysis allows detection of differences in diastolic function between viable and nonviable myocardial segments. J Am Soc Echocardiogr 2005;18:330-5
  • Miyasaka Y, Haiden M, Kamihata H, Usefulness of strain rate imaging in detecting ischemic myocardium during dobutamine stress. Int J Cardiol 2005;102:225-31
  • Bijnens B, Claus P, Weidemann F, Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation 2007;116:2453-64
  • Schneider C, Jaquet K, Geidel S, Transplantation of bone marrow-derived stem cells improves myocardial diastolic function: strain rate imaging in a model of hibernating myocardium. J Am Soc Echocardiogr 2009;22:1180-9
  • Schneider C, Krause K, Jaquet K, Intramyocardial transplantation of bone marrow-derived stem cells: ultrasonic strain rate imaging in a model of hibernating myocardium. J Card Fail 2008;14:861-72
  • Demirkol MO. Myocardial viability testing in patients with severe left ventricular dysfunction by SPECT and PET. Anadolu Kardiyol Derg 2008;8(Suppl 2):60-70
  • Maes AF, Borgers M, Flameng W, Assessment of myocardial viability in chronic coronary artery disease using technetium-99 m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol 1997;29:62-8
  • Matsunari I, Fujino S, Taki J, Quantitative rest technetium-99 m tetrofosmin imaging in predicting functional recovery after revascularization: comparison with rest-redistribution thallium-201. J Am Coll Cardiol 1997;29:1226-33
  • Udelson JE, Coleman PS, Metherall J, Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation 1994;89:2552-61
  • Kauffman GJ, Boyne TS, Watson DD, Comparison of rest thallium-201 imaging and rest technetium-99 m sestamibi imaging for assessment of myocardial viability in patients with coronary artery disease and severe left ventricular dysfunction. J Am Coll Cardiol 1996;27:1592-7
  • Bax JJ, Patton JA, Poldermans D, 18-Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography: cardiac applications. Semin Nucl Med 2000;30:281-98
  • Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging 2009;2:412-24
  • Holz A, Lautamaki R, Sasano T, Expanding the versatility of cardiac PET/CT: feasibility of delayed contrast enhancement CT for infarct detection in a porcine model. J Nucl Med 2009;50:259-65
  • Katoh C, Morita K, Shiga T, Improvement of algorithm for quantification of regional myocardial blood flow using 15O-water with PET. J Nucl Med 2004;45:1908-16
  • Lortie M, Beanlands RS, Yoshinaga K, Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74
  • Hachamovitch R, Hayes SW, Friedman JD, Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003;107:2900-7
  • D'Egidio G, Nichol G, Williams KA, Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging 2009;2:1060-8
  • Fallavollita JA, Canty JM Jr. Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs. Circulation 1999;99:2798-805
  • Fallavollita JA, Perry BJ, Canty JM Jr. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation 1997;95:1900-9
  • Patila T, Ikonen T, Kankuri E, Spontaneous recovery of myocardial function after ligation of Ameroid-stenosed coronary artery. Scand Cardiovasc J 2009;43:408-16
  • Teramoto N, Koshino K, Yokoyama I, Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET. J Nucl Med 2011;52:761-8
  • Patila T, Ikonen T, Rutanen J, Vascular endothelial growth factor C-induced collateral formation in a model of myocardial ischemia. J Heart Lung Transplant 2006;25:206-13
  • Khorsand A, Graf S, Pirich C, Assessment of myocardial perfusion by dynamic N-13 ammonia PET imaging: comparison of 2 tracer kinetic models. J Nucl Cardiol 2005;12:410-17
  • Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol 2010;17:555-70
  • Wright J, Bogaert J. Role of cardiac magnetic resonance imaging in ischaemic heart disease. Intern Med J 2009;39:563-73
  • Judd RM, Wagner A, Rehwald WG, Technology insight: assessment of myocardial viability by delayed-enhancement magnetic resonance imaging. Nat Clin Pract Cardiovasc Med 2005;2:150-8
  • Bree D, Wollmuth JR, Cupps BP, Low-dose dobutamine tissue-tagged magnetic resonance imaging with 3-dimensional strain analysis allows assessment of myocardial viability in patients with ischemic cardiomyopathy. Circulation 2006;114:I33-6
  • Ibrahim T, Nekolla SG, Hornke M, Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction: comparison with single-photon emission tomography using Tc99 m-sestamibi. J Am Coll Cardiol 2005;45:544-52
  • Garcia-Dorado D, Oliveras J, Gili J, Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res 1993;27:1462-9
  • Fieno DS, Kim RJ, Chen EL, Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000;36:1985-91
  • Aletras AH, Tilak GS, Natanzon A, Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation 2006;113:1865-70
  • Baker CH, Morris JC. The sodium-iodide symporter. Curr Drug Targets Immune Endocr Metabol Disord 2004;4:167-74
  • Christian TF, Rettmann DW, Aletras AH, Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677-84
  • Gyongyosi M, Dib N. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat Rev Cardiol 2011;8:393-404
  • Gyongyosi M, Khorsand A, Sochor H, Characterization of hibernating myocardium with NOGA electroanatomic endocardial mapping. Am J Cardiol 2005;95:722-8
  • Keck A, Hertting K, Schwartz Y, Electromechanical mapping for determination of myocardial contractility and viability. A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. J Am Coll Cardiol 2002;40:1067-74; discussion 1075-8
  • Botker HE, Lassen JF, Hermansen F, Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 2001;103:1631-7
  • Callans DJ, Ren JF, Michele J, Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation 1999;100:1744-50
  • Fuchs S, Kornowski R. Correlation between endocardial voltage mapping and myocardial perfusion: implications for the assessment of myocardial ischemia. Coron Artery Dis 2005;16:163-7
  • Johnson LL, Schofield L, Donahay T, Radiolabeled arginine-glycine-aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. JACC Cardiovasc Imaging 2008;1:500-10
  • Roth DM, Maruoka Y, Rogers J, Development of coronary collateral circulation in left circumflex Ameroid-occluded swine myocardium. Am J Physiol 1987;253:H1279-88
  • Roth DM, White FC, Nichols ML, Effect of long-term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation 1990;82:1778-89
  • O'Konski MS, White FC, Longhurst J, Ameroid constriction of the proximal left circumflex coronary artery in swine. A model of limited coronary collateral circulation. Am J Cardiovasc Pathol 1987;1:69-77
  • Radke PW, Heinl-Green A, Frass OM, Evaluation of the porcine ameroid constrictor model of myocardial ischemia for therapeutic angiogenesis studies. Endothelium 2006;13:25-33
  • Caillaud D, Calderon J, Reant P, Echocardiographic analysis with a two-dimensional strain of chronic myocardial ischemia induced with ameroid constrictor in the pig. Interact Cardiovasc Thorac Surg 2010;10(5):689-93
  • Chen SL, Zhu CC, Liu YQ, Mesenchymal stem cells genetically modified with the angiopoietin-1 gene enhanced arteriogenesis in a porcine model of chronic myocardial ischaemia. J Int Med Res 2009;37:68-78
  • Ninomiya M, Koyama H, Miyata T, Ex vivo gene transfer of basic fibroblast growth factor improves cardiac function and blood flow in a swine chronic myocardial ischemia model. Gene Ther 2003;10:1152-60
  • Shen YT, Vatner SF. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 1995;76:479-88
  • Giordano C, Thorn SL, Suuronen EJ, Preclinical evaluation of biopolymer-delivered endothelial progenitor cells in hibernating myocardium, in AHA scientific session. Circulation 2011;124:A16967
  • Almeda FQ, Glock D, Sandelski J, The effect of percutaneous transmyocardial laser revascularization on left ventricular function in a porcine model of hibernating myocardium: a pilot study. Cardiovasc Radiat Med 2004;5:132-5
  • Schneider C, Jaquet K, Malisius R, Attenuation of cardiac remodelling by endocardial injection of erythropoietin: ultrasonic strain-rate imaging in a model of hibernating myocardium. Eur Heart J 2007;28:499-509
  • Kamihata H, Matsubara H, Nishiue T, Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol 2002;22:1804-10
  • Fuchs S, Kornowski R, Shiran A, Electromechanical characterization of myocardial hibernation in a pig model. Coron Artery Dis 1999;10:195-8
  • Chekanov V, Akhtar M, Tchekanov G, Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin Electrophysiol 2003;26:496-9
  • Ozaki S, Meyns B, Racz R, Effect of transmyocardial laser revascularization on chronic ischemic hearts in sheep. Eur J Cardiothorac Surg 2000;18:404-10
  • Silva GV, Litovsky S, Assad JA, Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150-6
  • Boodhwani M, Nakai Y, Mieno S, Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. Ann Thorac Surg 2006;81:634-41
  • Krause K, Schneider C, Lange C, Endocardial electrogram analysis after intramyocardial injection of mesenchymal stem cells in the chronic ischemic myocardium. Pacing Clin Electrophysiol 2009;32:1319-28
  • Robich MP, Osipov RM, Chu LM, Temporal and spatial changes in collateral formation and function during chronic myocardial ischemia. J Am Coll Surg 2010;211:470-80
  • Chen SY, Wang F, Yan XY, Autologous transplantation of EPCs encoding FGF1 gene promotes neovascularization in a porcine model of chronic myocardial ischemia. Int J Cardiol 2009;135:223-32
  • Crottogini A, Meckert PC, Vera Janavel G, Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum Gene Ther 2003;14:1307-18
  • Fuchs S, Baffour R, Zhou YF, Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726-32
  • Goodchild T, Pang W, Tondato F, Safety of intramyocardial injection of autologous bone marrow cells to treat myocardial ischemia in pigs. Cardiovasc Revasc Med 2006;7:136-45
  • Sato K, Laham RJ, Pearlman JD, Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 2000;70:2113-18
  • Sato K, Wu T, Laham RJ, Efficacy of intracoronary or intravenous VEGF165 in a pig model of chronic myocardial ischemia. J Am Coll Cardiol 2001;37:616-23
  • Zhou Y, Wang S, Yu Z, Direct injection of autologous mesenchymal stromal cells improves myocardial function. Biochem Biophys Res Commun 2009;390:902-7
  • Zhu CC, Chen SL, Lin XF, Create a standard mini-swine model of chronic ischemic myocardium by thoracoscopy. Zhonghua Wai Ke Za Zhi 2008;46:1163-5
  • Fallavollita JA, Logue M, Canty JM Jr. Stability of hibernating myocardium in pigs with a chronic left anterior descending coronary artery stenosis: absence of progressive fibrosis in the setting of stable reductions in flow, function and coronary flow reserve. J Am Coll Cardiol 2001;37:1989-95
  • Banas MD, Baldwa S, Suzuki G, Determinants of contractile reserve in viable, chronically dysfunctional myocardium. Am J Physiol Heart Circ Physiol 2007;292:H2791-7
  • St Louis JD, Hughes GC, Kypson AP, An experimental model of chronic myocardial hibernation. Ann Thorac Surg 2000;69:1351-7
  • Wu M, Bogaert J, D'Hooge J, Closed-chest animal model of chronic coronary artery stenosis. Assessment with magnetic resonance imaging. Int J Cardiovasc Imaging 2010;26:299-308
  • Wu M, D'Hooge J, Ganame J, Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischaemia. Cardiovasc Res 2011;89:166-74
  • Kupatt C, Hinkel R, von Bruhl ML, Endothelial nitric oxide synthase overexpression provides a functionally relevant angiogenic switch in hibernating pig myocardium. J Am Coll Cardiol 2007;49:1575-84
  • von Degenfeld G, Raake P, Kupatt C, Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol 2003;42:1120-8
  • Horstick G, Bierbach B, Abegunewardene N, Critical single proximal left arterial descending coronary artery stenosis to mimic chronic myocardial ischemia: a new model induced by minimal invasive technology. J Vasc Res 2009;46:290-8
  • Dymarkowski S, Szilard M, Maes A, Assessment of myocardial viability in a porcine model of chronic coronary artery stenosis with dual dose dobutamine magnetic resonance imaging. Int J Cardiovasc Imaging 2003;19:63-72
  • Szilard M, Mesotten L, Maes A, A nonsurgical porcine model of left ventricular dysfunction. Validation of myocardial viability using dobutamine stress echocardiography and positron emission tomography. Int J Cardiovasc Intervent 2000;3:111-20
  • Bito V, Heinzel FR, Claus P, Alterations in excitation-contraction coupling in chronically ischemic or hibernating myocardium. Exp Clin Cardiol 2005;10:142-5
  • Ikonen TS, Patila T, Virtanen K, Ligation of ameroid-stenosed coronary artery leads to reproducible myocardial infarction – a pilot study in a porcine model. J Surg Res 2007;142:195-201
  • de Groot D, Grundmann S, Timmers L, Assessment of collateral artery function and growth in a pig model of stepwise coronary occlusion. Am J Physiol Heart Circ Physiol 2011;300:H408-14
  • Fallavollita JA, Canty JM Jr. Ischemic cardiomyopathy in pigs with two-vessel occlusion and viable, chronically dysfunctional myocardium. Am J Physiol Heart Circ Physiol 2002;282:H1370-9
  • Barandon L, Calderon J, Reant P, Adjustment and characterization of an original model of chronic ischemic heart failure in pig. Cardiol Res Pract 2010;2010
  • Beltrami AP, Urbanek K, Kajstura J, Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-7
  • Kodama K, Kusuoka H, Sakai A, Collateral channels that develop after an acute myocardial infarction prevent subsequent left ventricular dilation. J Am Coll Cardiol 1996;27:1133-9
  • Jackson KA, Majka SM, Wang H, Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-402
  • Balsam LB, Wagers AJ, Christensen JL, Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428:668-73
  • Murry CE, Soonpaa MH, Reinecke H, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664-8
  • Gnecchi M, He H, Noiseux N, Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006;20:661-9
  • Bartunek J, Sherman W, Vanderheyden M, Delivery of biologics in cardiovascular regenerative medicine. Clin Pharmacol Ther 2009;85:548-52
  • Kocher AA, Schuster MD, Szabolcs MJ, Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430-6
  • Cho HJ, Lee N, Lee JY, Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 2007;204:3257-69
  • Uemura R, Xu M, Ahmad N, Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006;98:1414-21
  • Formigli L, Perna AM, Meacci E, Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling. J Cell Mol Med 2007;11:1087-100
  • Fedak PW, Szmitko PE, Weisel RD, Cell transplantation preserves matrix homeostasis: a novel paracrine mechanism. J Thorac Cardiovasc Surg 2005;130:1430-9
  • Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008;28:1584-95
  • Schuh A, Liehn EA, Sasse A, Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 2008;103:69-77
  • Kawamoto A, Tkebuchava T, Yamaguchi J, Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003;107:461-8
  • Kawamoto A, Gwon HC, Iwaguro H, Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634-7
  • Suuronen EJ, Price J, Veinot JP, Comparative effects of mesenchymal progenitor cells, endothelial progenitor cells, or their combination on myocardial infarct regeneration and cardiac function. J Thorac Cardiovasc Surg 2007;134:1249-58
  • Kamihata H, Matsubara H, Nishiue T, Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001;104:1046-52
  • Lachtermacher S, Esporcatte BL, da Silva de Azevedo Fortes F, Functional and transcriptomic recovery of infarcted mouse myocardium treated with bone marrow mononuclear cells. Stem Cell Rev 2011;8(1):251-61
  • van der Bogt KE, Sheikh AY, Schrepfer S, Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 2008;118:S121-9
  • Kuraitis D, Ruel M, Suuronen EJ. Mesenchymal Stem cells for cardiovascular regeneration. Cardiovasc Drugs Ther 2011;25(4):349-62
  • Wang J, Liao L, Tan J. Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions. Expert Opin Biol Ther 2011;11:893-909
  • Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95:9-20
  • Tomita S, Li RK, Weisel RD, Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100:II247-56
  • Dai W, Hale SL, Martin BJ, Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005;112:214-23
  • Amado LC, Saliaris AP, Schuleri KH, Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 2005;102:11474-9
  • Kinnaird T, Stabile E, Burnett MS, Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004;94:678-85
  • Chen L, Tredget EE, Wu PY, Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008;3:e1886
  • Wu Y, Chen L, Scott PG, Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007;25:2648-59
  • Zhao S, Wehner R, Bornhauser M, Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 2010;19:607-14
  • Tse WT, Pendleton JD, Beyer WM, Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003;75:389-97
  • Bartholomew A, Sturgeon C, Siatskas M, Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42-8
  • Makino S, Fukuda K, Miyoshi S, Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697-705
  • Tomita S, Nakatani T, Fukuhara S, Bone marrow stromal cells contract synchronously with cardiomyocytes in a coculture system. Jpn J Thorac Cardiovasc Surg 2002;50:321-4
  • Kuraitis D, Suuronen EJ, Sellke FW, The future of regenerating the myocardium. Curr Opin Cardiol 2010;25:575-82
  • Dib N, Khawaja H, Varner S, Cell therapy for cardiovascular disease: a comparison of methods of delivery. J Cardiovasc Transl Res 2011;4:177-81
  • Hou D, Youssef EA, Brinton TJ, Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005;112:I150-6
  • Kornowski R, Leon MB, Fuchs S, Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 2000;35:1031-9
  • Suuronen EJ, Veinot JP, Wong S, Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation 2006;114:I138-44
  • Tse HF, Siu CW, Zhu SG, Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur J Heart Fail 2007;9:747-53
  • Huang SD, Lu FL, Xu XY, Transplantation of angiogenin-overexpressing mesenchymal stem cells synergistically augments cardiac function in a porcine model of chronic ischemia. J Thorac Cardiovasc Surg 2006;132:1329-38
  • Zhou Y, Wang S, Yu Z, Marrow stromal cells differentiate into vasculature after allogeneic transplantation into ischemic myocardium. Ann Thorac Surg 2011;91:1206-12
  • Silva GV, Fernandes MR, Cardoso CO, A dosing study of bone marrow mononuclear cells for transendocardial injection in a pig model of chronic ischemic heart disease. Tex Heart Inst J 2011;38:219-24
  • Kalka C, Masuda H, Takahashi T, Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000;97:3422-7
  • Zhang Y, Thorn S, DaSilva JN, Collagen-based matrices improve the delivery of transplanted circulating progenitor cells: development and demonstration by ex vivo radionuclide cell labeling and in vivo tracking with positron-emission tomography. Circ Cardiovasc Imaging 2008;1:197-204
  • van Ramshorst J, Rodrigo SF, Schalij MJ, Bone marrow cell injection for chronic myocardial ischemia: the past and the future. J Cardiovasc Transl Res 2011;4:182-91
  • Beeres SL, Bax JJ, Kaandorp TA, Usefulness of intramyocardial injection of autologous bone marrow-derived mononuclear cells in patients with severe angina pectoris and stress-induced myocardial ischemia. Am J Cardiol 2006;97:1326-31
  • Briguori C, Reimers B, Sarais C, Direct intramyocardial percutaneous delivery of autologous bone marrow in patients with refractory myocardial angina. Am Heart J 2006;151:674-80
  • Losordo DW, Schatz RA, White CJ, Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 2007;115:3165-72
  • Tse HF, Kwong YL, Chan JK, Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003;361:47-9
  • Tse HF, Thambar S, Kwong YL, Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur Heart J 2007;28:2998-3005
  • van Ramshorst J, Bax JJ, Beeres SL, Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 2009;301:1997-2004
  • Fuchs S, Kornowski R, Weisz G, Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am J Cardiol 2006;97:823-9
  • Perin EC, Dohmann HF, Borojevic R, Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294-302
  • Seeger FH, Tonn T, Krzossok N, Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007;28:766-72
  • Patel AN, Spadaccio C, Kuzman M, Improved cell survival in infarcted myocardium using a novel combination transmyocardial laser and cell delivery system. Cell Transplant 2007;16:899-905
  • Devlin GP, Fort S, Yu E, Effect of a single bolus of intracoronary basic fibroblast growth factor on perfusion in an ischemic porcine model. Can J Cardiol 1999;15:676-82
  • Fuchs S, Shou M, Baffour R, Lack of correlation between angiographic grading of collateral and myocardial perfusion and function: implications for the assessment of angiogenic response. Coron Artery Dis 2001;12:173-8
  • White FC, Carroll SM, Magnet A, Coronary collateral development in swine after coronary artery occlusion. Circ Res 1992;71:1490-500
  • Wykrzykowska JJ, Henry TD, Lesser JR, Imaging myocardial angiogenesis. Nat Rev Cardiol 2009;6:648-58

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.