535
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Biomaterials and stem cells for tissue engineering

, &
Pages 527-540 | Published online: 17 Jan 2013

Bibliography

  • Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920-6
  • De Coppi P, Bartsch Jr G, Siddiqui MM, Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25(1):100-6
  • Saltzman WM, Olbricht WL. Building drug delivery into tissue engineering. Nat Rev Drug Discov 2002;1(3):177-86
  • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008;60(2):184-98
  • Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001;19(3):193-204
  • Pittenger MF, Mackay AM, Beck SC, Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-7
  • Varghese S, Elisseeff J, Hwang NS. Controlled differentiation of stem cells. Adv Drug Deliv Rev 2008;60(2):199-214
  • Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8(1):15-23
  • Altman GH, Diaz F, Jakuba C, Silk-based biomaterials. Biomaterials 2003;24(3):401-16
  • Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009;324(5923):59-63
  • Luo Y, Shoichet MS. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 2004;3(4):249-54
  • Salinas CN, Anseth KS. The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 2008;29(15):2370-7
  • Benoit DSW, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 2008;7(10):816-23
  • Ma PX. Scaffolds for tissue fabrication. Mater Today 2004;7(5):30-40
  • Engler A, Sen S, Sweeney H, Discher D. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677-89
  • Mizuno M, Shindo M, Kobayashi D, Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone 1997;20(2):101
  • Ma PX. Tissue engineering. In: Kroschvitz JI, editor. Encyclopedia of polymer science and technology. 3rd edition. John Wiley & Sons; Hoboken, NJ; 2004
  • Zhang R, Ma PX. Processing of polymer scaffolds: Phase separation. In: Atala A, Lanza R, editors. Methods of tissue engineering. Academic Press, San Diego; 2001
  • Pachence JM, Kohn J. Chapter 22 - Biodegradable polymers. In: Lanza R, Langer R, Vacanti JP, editors. Principles of tissue engineering. 2nd edition. Academic Press, San Diego; 2000. p. 263-77
  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini ARJ. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27(18):3413-31
  • Ma PX, Langer R. Degradation, structure and properties of fibrous poly(glycolic acid) scaffolds for tissue engineering. In: Mikos AG, editor. Polymers in medicine and pharmacy. Materials Research Society, Pittsburgh, PA; 1995. p. 99-104
  • Reed AM, Gilding DK. Biodegradable polymers for use in surgery - poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer (Guildf) 1981;22(4):494-8
  • Zhang R, Ma PX. Degradation behavior of porous poly (alpha-hydroxy acids)/hydroxyapatite composite scaffolds. Polymer Preprints 2000;41(2):1618-19
  • Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer (Guildf) 1982;23(11):1587-93
  • Pitt CG, Gratzl MM, Kimmel GL. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 1981;2(4):215-20
  • Miller ND, Williams DF. On the biodegradation of poly-beta-hydroxybutyrate (PHB) homopolymer and poly-beta-hydroxybutyrate-hydroxyvalerate copolymers. Biomaterials 1987;8(2):129-37
  • Sokolsky-Papkov M, Agashi K, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007;59(4-5):187-206
  • Bonzani IC, Adhikari R, Houshyar S, Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 2007;28(3):423-33
  • Guelcher SA, Srinivasan A, Dumas JE, Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials 2008;29(12):1762-75
  • Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. In: El-Gewely MR, editor. Biotechnology annual review. Elsevier, Amsterdam, Netherlands; 2006. p. 301-47
  • Leong KW, Kost J, Mathiowitz E, Langer R. Polyanhydrides for controlled release of bioactive agents. Biomaterials 1986;7(5):364-71
  • Choi NS, Heller J, inventors; Alza Corp. (Palo Alto, CA) assignee. Drug delivery devices manufactured from poly(orthoesters) and poly(orthocarbonates). US4093709; 1978
  • Elisseeff J, McIntosh W, Fu K, Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 2001;19(6):1098-104
  • Anderson DG, Levenberg S, Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 2004;22(7):863-6
  • Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 1999;44(4):446-55
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32(3):477-86
  • Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003;67(2):531-7
  • Hu J, Liu X, Ma PX. Induction of osteoblast differentiation phenotype on poly(l-lactic acid) nanofibrous matrix. Biomaterials 2008;29(28):3815-21
  • Zhang R, Ma PX. Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 2000;52(2):430-8
  • Chen VJ, Smith LA, Ma PX. Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 2006;27(21):3973-9
  • Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 2009;30(25):4094-103
  • Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 1999;46(1):60-72
  • Chen VJ, Ma PX. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 2004;25(11):2065-73
  • Chen VJ, Ma PX. The effect of surface area on the degradation rate of nano-fibrous poly(l-lactic acid) foams. Biomaterials 2006;27(20):3708-15
  • Liu X, Ma PX. The nanofibrous architecture of poly(l-lactic acid)-based functional copolymers. Biomaterials 2010;31(2):259-69
  • Wei G, Ma PX. Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials 2009;30(32):6426-34
  • Hu J, Sun X, Ma PX. Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 2010;31(31):7971-7
  • Ma H, Hu J, Ma PX. Polymer scaffolds for small-diameter vascular tissue engineering. Adv Funct Mater 2010;20(17):2833-41
  • Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 2006;78(2):306-15
  • Levenberg S, Rouwkema J, Macdonald M, Engineering vascularized skeletal muscle tissue. Nat Biotechnol 2005;23(7):879-84
  • Zhang S, Huang Y, Yang X, Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A 2009;90(3):671-9
  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002;3(2):232-8
  • Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603-10
  • Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24(12):2077-82
  • Zong X, Ran S, Kim K-S, Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules 2003;4(2):416-23
  • Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996;7(3):216-23
  • Jose MV, Thomas V, Xu Y, Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Macromol Biosci 2010;10(4):433-44
  • Nishida K. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004;351(12):1187
  • Wang P, Hu J, Ma PX. The engineering of patient-specific, anatomically shaped, digits. Biomaterials 2009;30(14):2735-40
  • Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Biomed Eng 2001;3:225-43
  • Germain L, Remy-Zolghadri M, Auger F. Tissue engineering of the vascular system: from capillaries to larger blood vessels. Med Biol Eng Comput 2000;38(2):232-40
  • Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 2002;23(6):475-85
  • Akao M, Sakatsume M, Aoki H, In vitro mineralization in bovine tooth germ cell cultured with sintered hydroxyapatite. J Mater Sci 1993;4(6):569-74
  • Puleo DA, Holleran LA, Doremus RH, Bizios R. Osteoblast responses to orthopedic implant materials in vitro. J Biomed Mater Res 1991;25(6):711-23
  • Webster TJ, Ergun C, Doremus RH, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000;51(3):475-83
  • Ma PX, Zhang R. Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 2001;56(4):469-77
  • Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 2001;54(2):284-93
  • Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004;25(19):4749-57
  • Ma PX, Zhang R, inventors; The Regents of the University of Michigan, assignee. Porous composite materials. US6281257; 2001
  • Ma PX, Zhang R, inventors; The Regents of the University of Michigan, assignee. Porous composite materials. US6867240; 2005
  • Zhang R, Ma PX. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromol Biosci 2004;4(2):100-11
  • Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009;30(12):2252-8
  • He C, Xiao G, Jin X, Electrodeposition on nanofibrous polymer scaffolds: rapid mineralization, tunable calcium phosphate composition and topography. Adv Funct Mater 2010;20:3568-76
  • Chen CS, Mrksich M, Huang S, Geometric control of cell life and death. Science 1997;276(5317):1425-8
  • Nitschke M, Schmack G, Janke A, Low pressure plasma treatment of poly(3-hydroxybutyrate): toward tailored polymer surfaces for tissue engineering scaffolds. J Biomed Mater Res 2002;59(4):632-8
  • Liu X, Won Y, Ma PX. Surface modification of interconnected porous scaffolds. J Biomed Mater Res A 2005;74(1):84-91
  • Liu X, Won Y, Ma PX. Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials 2006;27(21):3980-7
  • Liu X, Won Y, Ma PX. Surface engineering of nano-fibrous biodegradable poly(L-lactic acid) scaffolds for tissue engineering. MRS Proceedings 2004;2004:243-8
  • Schuldiner M, Yanuka O, Itskovitz-Eldor J, Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000;97(21):11307-12
  • Langer R. Drug delivery and targeting. Nature 1998;392(6679 Suppl):5-10
  • Wei G, Pettway GJ, McCauley LK, Ma PX. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. Biomaterials 2004;25(2):345-52
  • Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388(6645):860-2
  • Wei G, Jin Q, Giannobile WV, Ma PX. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release 2006;112(1):103-10
  • Wei G, Jin Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007;28(12):2087-96
  • Jin Q, Wei G, Lin Z, Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo. PLoS One 2008;3(3):e1729
  • Feng K, Sun H, Bradley MA, Novel antibacterial nanofibrous PLLA scaffolds. J Control Release 2010;146(3):363-9
  • Hu J, Feng K, Liu XH, Ma PX. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials 2009;30(28):5061-7
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78(12):7634-8
  • Smith LA, Liu X, Hu J, Enhancing osteogenic differentiation of mouse embryonic stem cells by nanofibers. Tissue Eng Part A 2009;15(7):1855-64
  • Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng 2006;12(9):2695-706
  • Brown SE, Tong W, Krebsbach PH. The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs 2009;189(1-4):256-60
  • Hu J, Smith LA, Feng K, Response of human embryonic stem cell-derived mesenchymal stem cells to osteogenic factors and architectures of materials during in vitro osteogenesis. Tissue Eng Part A 2010;16(11):3507-14
  • Sun H, Feng K, Hu J, Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials 2010;31(6):1133-9
  • Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9(5):641-50
  • Massa L, Aranachavez V. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol 2004;36(8):1367-73
  • Wang J, Ma H, Jin X, The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 2011;32(31):7822-30
  • Wang J, Liu X, Jin X, The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(l-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 2010;6(10):3856-63
  • Tian H, Bharadwaj S, Liu Y, Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nanofibrous scaffold for bladder tissue engineering. Biomaterials 2010;31(5):870-7
  • Hu J, Xie C, Ma H, Construction of vascular tissues with macro-porous nano-fibrous scaffolds and smooth muscle cells enriched from differentiated embryonic stem cells. PLoS ONE 2012;7(4):e35580
  • Zonari A, Novikoff S, Electo NRP, Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS ONE 2012;7(4):e35422
  • Wingate K, Bonani W, Tan Y, Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers. Acta Biomater 2012;8(4):1440-9
  • Caplan AI. Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005;11(7-8):1198-211
  • Zhang Y, Fan W, Ma Z, The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater 2010;6(8):3021-8
  • Sun H, Feng K, Hu J, Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials 2010;31(6):1133-9
  • Babensee J, McIntire L, Mikos A. Growth factor delivery for tissue engineering. Pharm Res 17(5):497-504
  • Schurr MJ, Foster KN, Centanni JM, Phase I/II clinical evaluation of StrataGraft: a consistent, pathogen-free human skin substitute. J Trauma 2009;66(3):866-73
  • Matsumura G, Hibino N, Ikada Y, Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003;24(13):2303-8
  • Raya-Rivera A, Esquiliano DR, Yoo JJ, Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 2011;377(9772):1175-82
  • Marcacci M, Kon E, Moukhachev V, Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 2007;13(5):947-55
  • Quarto R, Mastrogiacomo M, Cancedda R, Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344(5):385-6
  • Morishita T, Honoki K, Ohgushi H, Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients' mesenchymal stem cells. Artif Organs 2006;30(2):115-18
  • Warnke PH, Springer ING, Wiltfang J, Growth and transplantation of a custom vascularised bone graft in a man. Lancet 2004;364(9436):766-70
  • Knight MAF, Evans GRD. Tissue engineering: progress and challenges. Plast Reconstr Surg 2004;114(2):26e-37e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.