1,030
Views
68
CrossRef citations to date
0
Altmetric
Reviews

Manufacturing and banking of mesenchymal stem cells

, PhD, , PhD & , PhD
Pages 673-691 | Published online: 23 Jan 2013

Bibliography

  • Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev 2006;5(1):91-116
  • Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100:1249-60
  • Zweigerdt R. Large scale production of stem cells and their derivatives. Adv Biochem Eng Biotechnol 2009;114:201-35
  • Mannello F, Tonti GA. Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!. Stem Cells 2007;25(7):1603-9
  • Agata H, Watanabe N, Ishii Y, Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions. Biochem Biophys Res Commun 2009;382(2):353-8
  • Bernardo ME, Avanzini MA, Perotti C, Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for fetal calf serum substitute. J Cell Physiol 2007;211:121-30
  • Lange C, Cakiroglu F, Spiess AN, Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physio 2007;213:18-26
  • Lindroos B, Boucher S, Chase L, Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 2009;11:958-72
  • Liu CH, Wu ML, Hwang SM. Optimization of serum free medium for cord blood mesenchymal stem cells. Biochem Eng J 2007;33(1):1-9
  • Bruserud O, Tronstad KJ, Berge R. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum. J Cancer Res Clin Oncol 2005;131:377-84
  • Unger C, Skottman H, Blomberg P, Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 2008;17:R48-53
  • Ancans J. Cell therapy medicinal product regulatory framework in Europe and its application for MSC-based therapy development. Front Immunol 2012;3:253
  • Parson A. The long journey from stem cells to medical product. Cell 2006;125(1):9-11
  • Thirumala S, Goebel WS, Woods EJ. Clinical grade adult stem cell banking. Organogenesis 2009;5(3):143-54
  • Woods EJ, Pollok KE, Byers MA, Cord blood stem cell cryopreservation. Transfus Med Hemother 2007;34:276-85
  • Woods EJ, Thirumala S. Packaging Considerations for Biopreservation. Transfus Med Hemother 2011;38(2):149-56
  • Woods EJ, Bagchi A, Goebel WS, Container system for enabling commercial production of cryopreserved cell therapy products. Regen Med 2010;5(4):659-67
  • Korbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med 2003;349:570-82
  • Barlow S, Brooke G, Chatterjee K, Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 2008;1095-107
  • Wagner W, Wein F, Seckinger A, Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue and umbilical cord blood. Exp Hematol 2005;33:1402-16
  • Kevin G, Connie F, Sharp JG, Ann B. Does the number or quality of pluripotent bone marrow stem cells decrease with age? C Orthod Relat R 2007;465:202-7
  • Sarugaser R, Lickorish D, Baksh D, Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005;23(2):220-9
  • Lu LL, Liu YJ, Yang SG, Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006;91(8):1017-26
  • Peng L, Jia Z, Yin X, Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 2008;17(4):761-73
  • Kern S, Eichler H, Stoeve J, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294-301
  • Nakamura S, Yamada Y, Katagiri W, Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 2009;35(11):1536-42
  • Strem BM, Hedrick MH. The growing importance of fat in regenerative medicine. Trends Biotechnol 2005;23(2):64-6
  • Vallee M, Cote JF, Fradette J. Adipose-tissue engineering: taking advantage of the properties of human adipose-derived stem/stromal cells. Pathol Biol (Paris) 2009;57(4):309-17
  • Wexler SA, Donaldson C, Denning-Kendall P, Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003;121(2):368-74
  • Wan C, He Q, Li G. Allogenic peripheral blood derived mesenchymal stem cells (MSC) enhance bone regeneration in rabbit ulna criticalsized bone defect model. J Orthop Res 2006;24:610-18
  • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005;52:2521-9
  • Van Harmelen V, Rohrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 2004;53(5):632-7
  • Shetty P, Cooper K, Viswanathan C. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci 2010;4(1):14-24
  • Gronthos S, Mankani M, Brahim J, Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000;97(25):13625-30
  • Miura M, Gronthos S, Zhao M, SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003;100(10):5807-12
  • Seo BM, Miura M, Gronthos S, Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004;364(9429):149-55
  • Sonoyama W, Liu Y, Yamaza T, Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 2008;34(2):166-71
  • Morsczeck C, Gotz W, Schierholz J, Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005;24(2):155-65
  • Perry BC, Zhou D, Wu X, Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 2008;14(2):149-56
  • Woods EJ, Perry BC, Hockema JJ, Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 2009;59(2):150-7; Epub 2009 Jun 16
  • Shi S, Bartold PM, Miura M, The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005;8(3):191-9
  • Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009;88(9):792-806
  • Zhang W, Walboomers XF, Shi S, Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 2006;12:2813-23
  • Abe S, Hamada K, Miura M, Yamaguchi S. Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biol Int 2012; Epub ahead of print
  • Parson A. The long journey from stem cells to medical product. Cell 2006;125(1):9-11
  • Pevsner-Fischer M, Levin S, Zipori D. The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 2011;7:560-8
  • Kuznetsov SA, Krebsbach PH, Satomura K, Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 1997;12(9):1335-47
  • Gonzalez-Gonzalez M, Vazquez-Villegas P, Garcia-Salinas C, Rito-Palomares M. Current strategies and challenges for the purification of stem cells. J Chem Technol Biotechnol 2012;87(1):2-10
  • Kumar A, Bhardwaj A. Methods in cell separation for biomedical application: cryogels as a new tool. Biomed Mater 2008;3(3):034008
  • Kirouac DC, Zandstra PW. The systematic production of cells for cell therapies. Cell Stem Cell 2008;3(4):369-81
  • Rowley J, Abraham E, Campbell A, Meeting lot-size challenges of manufacturing adherent cells for therapy. BioProcess Int 2012;10:16-22
  • Want AJ, Nienow AW, Hewitt CJ, Coopman K. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regen Med 2012;7(1):71-84
  • Collins PC, Miller WM, Papoutsakis ET. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnol Bioeng 1998;59:534-43
  • Placzek MR, Chung IM, Macedo HM, Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 2009;6:209-32
  • Ellis M, Jarman-Smith M, Chaudhuri JB. Bioreactor systems for tissue engineering: a four-dimensionalchallenge. In: Chaudhuri J, Al-Rubeai M, editors. Bioreactors for tissue engineering. Springer, Netherlands; 2005. p. 1-18
  • Kehoe DE, Jing D, Lock LT, Tzanakakis ES. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 2010;16(2):405-21
  • Schwarz RP, Goodwin TJ, Wolf DA. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 1992;14(2):51-7
  • Mitteregger R, Vogt G, Rossmanith E, Falkenhagen D. Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int J Artif Organs 1999;22(12):816-22
  • Vunjak-Novakovic G, Searby N, De Luis J, Freed LE. Microgravity studies of cells and tissues. Ann N Y Acad Sci 2002;974:504-17
  • Rodrigues CA, Fernandes TG, Diogo MM, Stem cell cultivation in bioreactors. Biotechnol Adv 2011;29(6):815-29
  • Yuan Y, Kallos MS, Hunter C, Sen A. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. J Tissue Eng Regen Med 2012; Epub ahead of print
  • Hirtenstein M, Clark J, Lindgren G, Vretblad P. Microcarriers for animal cell culture: a brief review of theory and practice. Dev Biol Stand 1980;46:109-16
  • Martin Y, Eldardiri M, Lawrence-Watt DJ, Sharpe JR. Microcarriers and their potential in tissue regeneration. Tissue Eng Part B Rev 2011;17(1):71-80
  • Schop D, Janssen FW, van Rijn LD, Growth, metabolism, and growth inhibitors of mesenchymal stem cells. Tissue Eng Part A 2009;15(8):1877-86
  • Hambor JE. Bioreactor design and bioprocess controls for industrialized cell processing. Bio Process Int 2012;10(6):22-33
  • Kume T, Taguchi R, Katsuki H, Serofendic acid, a neuroprotective substance derived from fetal calf serum, inhibits mitochondrial membrane depolarization and caspase-3 activation. Eur J Pharmacol 2006;542:69-76
  • Horwitz EM, Prockop DJ, Fitzpatrick LA, Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5(3):309-13
  • Goebel WS, Nalepa G, Shadday MD, Co-transplantation of matched related donor marrow and marrow-derived mesenchymal stem/stromal cells for the treatment of fanconi anemia. Transfusion 2012;52(Suppl s3):13A
  • Lam AC, Li K, Zhang XB, Preclinical ex vivo expansion of cord blood hematopoietic stem and progenitor cells: duration of culture; the media, serum supplements, and growth factors used; and engraftment in NOD/SCID mice. Transfusion 2001;41:1567-76
  • Shahdadfar A, Fronsdal K, Haug T, In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 2005;23(9):1357-66
  • Mizuno N, Shiba H, Ozeki Y, Human autologous serum obtained using a completely closed bag system as a substitute for foetal calf serum in human mesenchymal stem cell cultures. Cell Biol Int 2006;30(6):521-4
  • Rauch C, Feifel E, Amann EM, Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. ALTEX 2011;28(4):305-16
  • Jung S, Panchalingam KM, Wuerth RD, Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol Appl Biochem 2012;59(2):106-20
  • Poloni A, Maurizi G, Rosini V, Selection of CD271(+) cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow. Cytotherapy 2009;11(2):153-62
  • Tateishi K, Ando W, Higuchi C, Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant 2008;17:549-57
  • Reinhardt J, Stuhler A, Blumel J, Safety of bovine sera for production of mesenchymal stem cells for therapeutic use. Hum Gene Ther 2011;22(6):775
  • Kagami H, Agata H, Kato R, Fundamental technological developments required for increased availability of tissue engineering. In: Eberli D, editor. Regenerative medicine and tissue-cells and biomaterials, 2011. Available at: http://www.intechopen.com/books/regenerative-medicine-and-tissue-engineering-cells-and-biomaterials/fundamental-technological-developments-required-for-increased-availability-of-tissue-engineering [ Last accessed 14 January 2013]
  • Thirumala S, Gimble JM, Devireddy RV. Cryopreservation of stromal vascular fraction of adipose tissue in a serum-free freezing medium. J Tissue Eng Regen Med 2010;4:224-32
  • Thirumala S, Gimble JM, Devireddy RV. Evaluation of methylcellulose and dimethyl sulfoxide as the cryoprotectants in a serum-free freezing media for cryopreservation of adipose-derived adult stem cells. Stem Cells Dev 2010;19(4):513-22
  • Thirumala S, Wu X, Gimble JM, Evaluation of polyvinylpyrrolidone as a cryoprotectant for adipose tissue-derived adult stem cells. Tissue Eng Part C Methods 2010;16(4):783-92
  • Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett 2004;25(6):375-88
  • Alessandrino P, Bernasconi P, Caldera D, Adverse events occurring during bone marrow or peripheral blood progenitor cell infusion: analysis of 126 cases. Bone Marrow Transplant 1999;23:533-7
  • Benekli M, Anderson B, Wentling D, Severe respiratory depression after dimethyl sulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis. Bone Marrow Transplant 2000;25:1299-301
  • Higman MA, Port JD, Beauchamp NJ Jr, Chen AR. Reversible leukoencephalopathy associated with re-infusion of DMSO preserved stem cells. Bone Marrow Transplant 2000;26:797-800
  • Windrum P, Morris TCM. Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation. Bone Marrow Transplant 2003;31:315
  • Windrum P, Morris TC, Drake MB, Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant 2005;36:601-3
  • Zambelli A, Poggi G, Da Prada G, Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res 1998;18:4705-8
  • Rowley SD, Feng Z, Yadock D, Post-thaw removal of DMSO does not completely abrogate infusional toxicity or the need for pre-infusion histamine blockade. Cytotherapy 1999;1:439–46.
  • Davis JM, Rowley SD, Braine HG, Clinical toxicity of cryopreserved bone marrow graft infusion. Blood 1990;75:781-6
  • Miniero R, Vai S, Giacchino M, Severe respiratory depression after autologous bone marrow infusion. Haematologica 1992;77:98-9
  • Zenhausern R, Tobler A, Leoncini L, Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol 2000;79:523-6
  • Ferrucci PF, Martinon A, Cocorocchio E, Evaluation of acute toxicities associated with autologous peripheral blood progenitor cell reinfusion in patients undergoing high-dose chemotherapy. Bone Marrow Transplant 2000;25:173-7
  • Hequet O, Dumontet C, El Jaafari-Corbin A, Epileptic seizures after autologous peripheral blood progenitor infusion in a patient treated with high-dose chemotherapy for myeloma. Bone Marrow Transplant 2002;29:544
  • Calmels B, Houze P, Hengesse JC, Preclinical evaluation of an automated closed fluid management device: CytoMate, for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplant 2003;31(9):823-8
  • Stroh C, Cassens U, Samraj AK, The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. FASEB J 2002;16:1651-3
  • Milone G, Mercurio S, Strano A, Adverse events after infusions of cryopreserved hematopoietic stem cells depend on non-mononuclear cells in the infused suspension and patient age. Cytotherapy 2007;9(4):348-55
  • Akkok CA, Bruserud Ø. Autologous stem cell transplantation in the treatment of amyloidosis – can manipulation of the autograft reduce treatment-related toxicity?. In: Güvenç IA, editor. Amyloidosis - an insight to disease of systems and novel therapies, 2011. Available at: http://www.intechopen.com/books/amyloidosis-an-insight-to-disease-of-systems-and-novel-therapies/autologous-stem-cell-transplantation-in-the-treatment-of-amyloidosis-can-manipulation-of-the-autogra[ Last accessed 14 January 2013]
  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364-70
  • Young DA, Gavrilov S, Pennington CJ, Expression of metalloproteinases and inhibitors in the differentiation of P19CL6 cells into cardiac myocytes. Biochem Bioph Res Co 2004;322:759-65
  • Berz D, McCormack EM, Winer ES, Cryopreservation of hematopoietic stem cells. Am J Hematol 2007;82(6):463-72
  • Rodriguez L, Velasco B, Garcia J, Martin-Henao GA. Evaluation of an automated cell processing device to reduce the dimethyl sulfoxide from hematopoietic grafts after thawing. Transfusion 2005;45(8):1391-7
  • Buchanan SS, Gross SA, Acker JP, Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 2004;13:295-305
  • Fleming KK, Hubel A. Cryopreservation of hematopoietic and non-hematopoietic stem cells. Transfus Apher Sci 2006;34:309-15
  • Lakota J, Fuchsberger P. Autologous stem cell transplantation with stem cells preserved in the presence of 4.5 and 2.2% DMSO. Bone Marrow Transplant 1996;18:262-3
  • Halle P, Tournilhac O, Knopinska-Posluszny W, Uncontrolled-rate freezing and storage at −80°C, with only 3.5-percent DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion 2001;41(5):667-73
  • Bakken AM, Bruserud O, Abrahamsen JF. No differences in colony formation of peripheral blood stem cells frozen with 5 or 10% dimethyl sulfoxide. J Hematother Stem Cell Res 2003;12:351-8
  • Liseth K, Abrahamsen JF, Bjorsvik S, The viability of cryopreserved PBPC depends on the DMSO concentration and the concentration of nucleated cells in the graft. Cytotherapy 2005;7:328-33
  • Rodrigues JP, Paraguassu-Braga FH, Carvalho L, Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 2008;56(2):144-51
  • Liu Y, Xu X, Ma X, Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethyl sulfoxide and well-defined freezing solutions. Biotechnol Prog 2010;26(6):1635-43
  • Akkok CA, Liseth K, Hervig T, Use of different DMSO concentrations for cryopreservation of autologous peripheral blood stem cell grafts does not have any major impact on levels of leukocyte- and platelet-derived soluble mediators. Cytotherapy 2009;11(6):749-60
  • Akkok CA, Liseth K, Nesthus I, Autologous peripheral blood progenitor cells cryopreserved with 5 and 10 percent dimethyl sulfoxide alone give comparable hematopoietic reconstitution after transplantation. Transfusion 2008;48(5):877-83
  • Akkok CA, Holte MR, Tangen JM, Hematopoietic engraftment of dimethyl sulfoxide-depleted autologous peripheral blood progenitor cells. Transfusion 2009;49(2):354-61
  • Sasnoor LM, Kale VP, Limaye LS. A combination of catalase and trehalose as additives to conventional freezing medium results in improved cryoprotection of human hematopoietic cells with reference to in vitro migration and adhesion properties. Transfusion 2005;45(4):622-33
  • Hunt CJ, Armitage SE, Pegg DE. Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 2003;46:76-87
  • Perry BC, Zhou D, Wu X, Collection, cryopreservation and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 2008;14:149-56
  • Thirumala S, Zvonic S, Floyd E, Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol Prog 2005;21:1511-24
  • Shu Z, Kang X, Chen H, Development of a reliable, low-cost, controlled cooling rate instrument for the cryopreservation of hematopoietic stem cells. Cytotherapy 2010;12(2):161-9
  • Zhou Y, Gasteyer TH III, Grinter NJ, Method and system for nucleation control in a controlled rate freezer (CRF). US20120102982; 2011
  • Woods EJ, Critser JK. Systems and methods for cryopreservation of cells. Patent application number: 20090148934; 2009
  • Zhou Y, Fowler Z, Cheng A, Sever R. Improve process uniformity and cell viability in cryopreservation. BioProcess International 2012;10(4):70-6
  • Stacey GN, Masters JR. Cryopreservation and banking of mammalian cell lines. Nat Protoc 2008;3:1981-9
  • Grout BWW, Morris GJ. Contaminated liquid nitrogen vapour as a risk factor in pathogen transfer. Theriogenology 2009;71:1079-82
  • Fountain D, Ralston M, Higgins N, Liquid nitrogen freezers: a potential source of microbial contamination of hematopoietic stem cell components. Transfusion 1977;37:585-91
  • Rowley JA. Developing cell therapy biomanufacturing processes. Chem Eng Progr (SBE Stem Cell Engineering Supplement) November 2010;50-5
  • Proposed approach to regulation of cellular and tissue-based products. The Food and Drug Administration. Proposed approach to regulation of cellular and tissue-based products. The Food and Drug Administration. Available from: [http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Tissue/UCM062601.pdf]
  • Carpenter MK, Frey-Vasconcells J, Rao MS. Developing safe therapies from human pluripotent stem cells. Nat Biotechnol 2009;27(7):606-13
  • FDA. Tissue related documents. 2007. Available from: http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Tissue/ucm073366.htm [Accessed on Tuesday July 10, 2012]
  • Dietz AB, Padley DJ, Gastineau DA. Infrastructure development for human cell therapy translation. Clin Pharmacol Ther 2007;82(3):320-4
  • Solomon R. Regulatory pathways: what regulations apply? 3rd Annual FDA and the Changing Paradigm for HCT/P Regulation; San Antonio, TX; 2007
  • Astori G, Soncin S, Lo Cicero V, Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products. Am J Transl Res 2010;2(3):285-95
  • European Medicines Agency. CAT Secretariat & US Food and Drug Administration. Regen Med 2011;6(6 Suppl):90-6
  • Polchow B, Kebbel K, Schmiedeknecht G, Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks. J Transl Med 2012;10(1):98
  • Mason C, Brindley DA, Culme-Seymour EJ, Cell therapy industry: billion dollar global business with unlimited potential. Regen Med 2011;6(3):265-72
  • Brindley DA, Davie NL, Sahlman WA, Promising growth and investment in the cell therapy industry during the first quarter of 2012. Cell Stem Cell 2012;10(5):492-6
  • Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007;25(6):1384-92
  • Sessarego N, Parodi A, Podesta M, Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 2008;93(3):339-46
  • Connick P, Kolappan M, Patani R, The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 2011;12:62
  • Hare JM, Traverse JH, Henry TD, A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54(24):2277-86
  • Sato K, Ozaki K, Mori M, Mesenchymal stromal cells for graft-versus-host disease : basic aspects and clinical outcomes. J Clin Exp Hematop 2010;50(2):79-89
  • Sharma S, Raju R, Sui S, Hu WS. Stem cell culture engineering - process scale up and beyond. Biotechnol J 2011;6(11):1317-29
  • Docherty K, Bernardo AS, Vallier L. Embryonic stem cell therapy for diabetes mellitus. Semin Cell Dev Biol 2007;18(6):827-38
  • Wang D, Zhang H, Liang J, Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years experience. Cell Transplant 2012; Epub ahead of print
  • Azarin SM, Palecek SP. Development of Scalable Culture Systems for Human Embryonic Stem Cells. Biochem Eng J 2010;48(3):378
  • Serra M, Brito C, Alves PM. Bioengineering strategies for stem cell expansion and differentiation. Canal Bioquimica 2010;7:30-7
  • Eibes G, Dos Santos F, Andrade PZ, Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier based stirred culture system. J Biotechnol 2010;146(4):194-7
  • Santos Fd, Andrade PZ, Abecasis MM, Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 2011;17(12):1201-10
  • Baksh D, Davies JE, Zandstra PW. Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp Hematol 2003;31(8):723-32
  • Kehoe D, Schnitzler A, Simler J, Scale-up of human mesenchymal stem cells on microcarriers in suspension in a single-use bioreactor. BioPharm International 2012;25(3):28-38
  • Yu Y, Li K, Bao C, Ex vitro expansion of human placenta-derived mesenchymal stem cells in stirred bioreactor. Appl BiochemBiotechnol 2009;159(1):110-18
  • Zhu Y, Liu T, Song K, Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks. Biotechnol J 2009;4(8):1198-209
  • Choi JS, Kim BS, Kim JD, In vitro expansion of human adipose-derived stem cells in a spinner culture system using human extracellular matrix powders. Cell Tissue Res 2011;345(3):415-23
  • Kang SW, Seo SW, Choi CY, Kim BS. Porous poly(lactic-co-glycolic acid) microsphere as cell culture substrate and cell transplantation vehicle for adipose tissue engineering. Tissue Eng Part C Methods 2008;14(1):25-34
  • Chen X, Xu H, Wan C, Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 2006;24(9):2052-9
  • Braccini A, Wendt D, Jaquiery C, Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells 2005;23(8):1066-72
  • Zhao F, Ma T. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng 2005;91(4):482-93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.