611
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Epigenetics in osteoarthritis and its implication for future therapeutics

, MD & , BS
Pages 713-721 | Published online: 15 Feb 2013

Bibliography

  • Brandt KD, Dieppe P, Radin EL. Etiopathogenesis of osteoarthritis. Rheum Dis Clin North Am 2008;34:531-59
  • Goldring MB. Molecular regulation of the chondrocyte phenotype. J Musculoskelet Neuronal Interact 2002;2:517-20
  • Loughlin J. The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med 2005;7:1-12
  • Barter MJ, Bui C, Young DA. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthritis Cartilage 2012;20:339-49
  • Reynard LN, Loughlin J. Genetics and epigenetics of osteoarthritis. Maturitas 2011;71:200-4
  • Roach HI, Aigner T. DNA methylation in osteoarthritic chondrocytes: a new molecular target. Osteoarthritis Cartilage 2007;15:128-37
  • Bird A. Perceptions of epigenetics. Nature 2007;447:396-8
  • Bentwich I, Avniel A, Karov Y, Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766-70
  • Bui C, Barter MJ, Scott JL, cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J 2012;26:3000-11
  • Bell CG, Finer S, Lindgren CM, Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One 2010;5:e14040
  • Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic approach to common human disease. Trends Genet 2004;20:350-8
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010;28:1057-68
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-57
  • Sesselmann S, Soder S, Voigt R, DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthritis Cartilage 2009;17:507-12
  • Cheung KS, Hashimoto K, Yamada N, Roach HI. Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. Rheumatol Int 2009;29:525-34
  • da Silva MA, Yamada N, Clarke NM, Roach HI. Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J Orthop Res 2009;27:593-601
  • Roach HI, Yamada N, Cheung KS, Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 2005;52:3110-24
  • Scott JL, Gabrielides C, Davidson RK, Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis 2010;69:1502-10
  • Loeser RF, Im HJ, Richardson B, Methylation of the OP-1 promoter: potential role in the age-related decline in OP-1 expression in cartilage. Osteoarthritis Cartilage 2009;17:513-17
  • Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis 2007;66:1616-21
  • Poschl E, Fidler A, Schmidt B, DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Ann Rheum Dis 2005;64:477-80
  • de Andres MC, Imagawa K, Hashimoto K, Suppressors of cytokine signalling (SOCS) are reduced in osteoarthritis. Biochem Biophys Res Commun 2011;407:54-9
  • Ezura Y, Sekiya I, Koga H, Methylation status of CpG islands in the promoter regions of signature genes during chondrogenesis of human synovium-derived mesenchymal stem cells. Arthritis Rheum 2009;60:1416-26
  • Imagawa K, de Andres MC, Hashimoto K, The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes–implications for osteoarthritis. Biochem Biophys Res Commun 2011;405:362-7
  • Hashimoto K, Oreffo RO, Gibson MB, DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 2009;60:3303-13
  • Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705
  • Jenuwein T, Allis CD. Translating the histone code. Science 2001;293(5532):1074-80
  • Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 2006;23:289-96
  • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004;338:17-31
  • Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007;6:1011-18
  • Marchion D, Munster P. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther 2007;7:583-98
  • Chung YL, Lee MY, Wang AJ, Yao LF. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther 2003;8:707-17
  • Nishida K, Komiyama T, Miyazawa S, Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum 2004;50:3365-76
  • Nakano K, Whitaker JW, Boyle DL, DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 2013;72:110-17
  • Choudhary C, Kumar C, Gnad F, Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834-40
  • Lee DY, Teyssier C, Strahl BD, Stallcup MR. Role of protein methylation in regulation of transcription. Endocr Rev 2005;26:147-70
  • Trojer P, Reinberg D. Histone lysine demethylases and their impact on epigenetics. Cell 2006;125:213-17
  • Chabane N, Zayed N, Afif H, Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage 2008;16:1267-74
  • Young DA, Lakey RL, Pennington CJ, Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther 2005;7:R503-12
  • Wang X, Song Y, Jacobi JL, Tuan RS. Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors 2009;27:40-9
  • Burrage PS, Huntington JT, Sporn MB, Brinckerhoff CE. Regulation of matrix metalloproteinase gene expression by a retinoid X receptor-specific ligand. Arthritis Rheum 2007;56:892-904
  • Furumatsu T, Tsuda M, Yoshida K, Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem 2005;280:35203-8
  • Hong S, Derfoul A, Pereira-Mouries L, Hall DJ. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J 2009;23:3539-52
  • Huh YH, Ryu JH, Chun JS. Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J Biol Chem 2007;282:17123-31
  • Chen WP, Bao JP, Hu PF, Alleviation of osteoarthritis by Trichostatin A, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol Biol Rep 2010;37:3967-72
  • Huber LC, Brock M, Hemmatazad H, Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 2007;56:1087-93
  • Higashiyama R, Miyaki S, Yamashita S, Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol 2009;20:11-17
  • El Mansouri FE, Chabane N, Zayed N, Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum 2011;63:168-79
  • Gagarina V, Gabay O, Dvir-Ginzberg M, SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum 2010;62:1383-92
  • Takayama K, Ishida K, Matsushita T, SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum 2009;60:2731-40
  • Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem 2008;283:36300-10
  • Fujita N, Matsushita T, Ishida K, Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res 2011;29:511-15
  • Hong EH, Lee SJ, Kim JS, Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem 2010;285:1283-95
  • Dioum EM, Chen R, Alexander MS, Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 2009;324:1289-93
  • Yang S, Kim J, Ryu JH, Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 16:687-93
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97
  • Yu C, Chen WP, Wang XH. MicroRNA in osteoarthritis. J Int Med Res 2011;39:1-9
  • Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 2008;3:e3740
  • Kobayashi T, Lu J, Cobb BS, Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 2008;105:1949-54
  • Jones SW, Watkins G, Le Good N, The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage 2009;17:464-72
  • Dunn W, DuRaine G, Reddi AH. Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum 2009;60:2333-9
  • Murata K, Yoshitomi H, Tanida S, Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2010;12:R86
  • Araldi E, Schipani E. MicroRNA-140 and the silencing of osteoarthritis. Genes Dev 2010;24:1075-80
  • Yamasaki K, Nakasa T, Miyaki S, Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum 2009;60:1035-41
  • Miyaki S, Nakasa T, Otsuki S, MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 2009;60:2723-30
  • Miyaki S, Sato T, Inoue A, MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 2010;24:1173-85
  • Li X, Gibson G, Kim JS, MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 2011;480:34-41
  • Thai TH, Calado DP, Casola S, Regulation of the germinal center response by microRNA-155. Science 2007;316:604-8
  • Cobb BS, Nesterova TB, Thompson E, T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 2005;201:1367-73
  • Kanellopoulou C, Muljo SA, Kung AL, Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005;19:489-501
  • Wu L, Zhou H, Zhang Q, DNA methylation mediated by a microRNA pathway. Mol Cell 2010;38:465-75
  • Bayne EH, Allshire RC. RNA-directed transcriptional gene silencing in mammals. Trends Genet 2005;21:370-3
  • Tuddenham L, Wheeler G, Ntounia-Fousara S, The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 2006;580:4214-17
  • Tardif G, Hum D, Pelletier JP, Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord 2009;10:148
  • Akhtar N, Rasheed Z, Ramamurthy S, MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum 2010;62:1361-71
  • Kim SY, Kim AY, Lee HW, miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010;392:323-8
  • Bazzoni F, Rossato M, Fabbri M, Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009;106:5282-7
  • Yan C, Wang Y, Shen XY, MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials 2011;32:6435-44
  • Sorrentino A, Ferracin M, Castelli G, Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol 2008;36:1035-46
  • Sumiyoshi K, Kubota S, Ohgawara T, Identification of miR-1 as a micro RNA that supports late-stage differentiation of growth cartilage cells. Biochem Biophys Res Commun 2010;402:286-90
  • Lin EA, Kong L, Bai XH, miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem 2009;284:11326-35
  • Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem 2010;285:24381-7
  • Ohgawara T, Kubota S, Kawaki H, Regulation of chondrocytic phenotype by micro RNA 18a: involvement of Ccn2/Ctgf as a major target gene. FEBS Lett 2009;583:1006-10
  • Perbal B. The CCN family of cell growth regulators: a new family of normal and pathologic cell growth and differentiation regulators: lessons from the first international workshop on CCN gene family. Bull Cancer 2001;88:645-9
  • Takigawa M, Nakanishi T, Kubota S, Nishida T. Role of CTGF/HCS24/ecogenin in skeletal growth control. J Cell Physiol 2003;194:256-66
  • Ivkovic S, Yoon BS, Popoff SN, Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 2003;130:2779-91
  • Nakanishi T, Nishida T, Shimo T, Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture. Endocrinology 2000;141:264-73
  • Nishida T, Kubota S, Nakanishi T, CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, stimulates proliferation and differentiation, but not hypertrophy of cultured articular chondrocytes. J Cell Physiol 2002;192:55-63
  • Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011;12:529-41
  • Reynard LN, Bui C, Canty-Laird EG, Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet 2010;20:3450-60
  • Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447:433-40
  • Feinberg AP. Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 2010;28:1049-52
  • Hellman A, Chess A. Extensive sequence-influenced DNA methylation polymorphism in the human genome. Epigenetics Chromatin 2010;3:11
  • Bell JT, Pai AA, Pickrell JK, DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 2011;12:R10
  • Goldring MB, Marcu KB. Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med 2012;18-2:109-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.