1,783
Views
96
CrossRef citations to date
0
Altmetric
Reviews

Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides

&
Pages 875-888 | Published online: 02 Mar 2013

Bibliography

  • Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 2010;50:259-93
  • Jones D. The long march of antisense. Nat Rev Drug Discov 2011;10(6):401-2
  • Alvarez-Salas LM. Nucleic acids as therapeutic agents. Curr Top Med Chem 2008;8(15):1379-404
  • Di Cresce C, Way C, Rytelewski M, et al. Antisense technology: from unique laboratory tool to novel anticancer treatments. In: Erdmann VA, Barciszewski J, editors. RNA technologies: from nucleic acids sequences to molecular medicine. Springer, Berlin; 2012. p. 145-89
  • Orr RM. Technology evaluation: fomivirsen, Isis Pharmaceuticals, Inc/CIBA vision. Curr Opin Mol Ther 2001;3(3):288-94
  • Yamamoto T, Nakatani M, Narukawa K, Obika S. Antisense drug discovery and development. Fut Med Chem 2011;3(3):339-65
  • Yu RZ, Geary RS, Levin AA. Pharmacokinetics and pharmacodynamics of antisense oligonucleotides. In: Meibohm B, editor. Pharmacokinetics and pharmacodynamics of biotech drugs: principles and case studies in drug development. Wiley-VCH, Weinheim; 2006. p. 93-146
  • Yu RZ, Lemonidis KM, Graham MJ, et al. Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100. Biochem Pharmacol 2009;77(5):910-19
  • Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev 2000;10(2):117-21
  • Kling J. Safety signal dampens reception for mipomersen antisense. Nat Biotech 2010;28(4):295-7
  • Pisano M, Baldinu P, Sini MC, et al. Targeting Bcl-2 protein in treatment of melanoma still requires further clarifications. Ann Oncol 2008;19(12):2092-3
  • Winkler J, Stessl M, Amartey J, Noe CR. Off-target effects related to the phosphorothioate modification of nucleic acids. ChemMedChem 2010;5(8):1344-52
  • Stessl M, Noe CR, Winkler J. Off-target effects and safety aspects of phosphorothioate oligonucleotides. In: Erdmann VA, Barciszewski J, editors. From nucleic acids sequences to molecular medicine, RNA technologies. Springer Verlag, Berlin; 2012. p. 67-83
  • Gekeler V, Gimmnich P, Hofmann HP, et al. G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice. Oligonucleotides 2006;16(1):83-93
  • Summerton JE. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem 2007;7(7):651-60
  • Manoharan M. 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta 1999;1489(1):117-30
  • Prakash TP, Kawasaki AM, Wancewicz EV, et al. Comparing in vitro and in vivo activity of 2′-O-[2-(methylamino)-2-oxoethyl]- and 2′-O-methoxyethyl-modified antisense oligonucleotides. J Med Chem 2008;51(9):2766-76
  • Fluiter K, Mook OR, Baas F. The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol Biol 2009;487:189-203
  • Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1999;1489(1):141-58
  • Seth PP, Siwkowski A, Allerson CR, et al. Short antisense oligonucleotides with novel 2′-4′ conformationally restricted nucleoside analogues show improved potency without increased toxicity in animals. J Med Chem 2009;52(1):10-13
  • Braasch DA, Corey DR. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 2001;8(1):1-7
  • Moulton JD, Jiang S. Gene knockdowns in adult animals: PPMOs and vivo-morpholinos. Molecules 2009;14(3):1304-23
  • Kinali M, Arechavala-Gomeza V, Feng L, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009;8(10):918-28
  • Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011;378(9791):595-605
  • Brady K, Webster R. Disposition of biologics. In: Hawksworth GM, editor. Current concepts in drug metabolism and toxicology. Academic Press San Diego, CA, USA; Adv Pharmacol 2012;63:257-77
  • Gauvreau GM, Pageau R, Seguin R, et al. Dose–response effects of TPI ASM8 in asthmatics after allergen. Allergy 2011;66(9):1242-8
  • Guimond A, Viau E, Aube P, et al. Advantageous toxicity profile of inhaled antisense oligonucleotides following chronic dosing in non-human primates. Pulm Pharmacol Ther 2008;21(6):845-54
  • Geary RS, Khatsenko O, Bunker K, et al. Absolute bioavailability of 2′-O-(2-methoxyethyl)-modified antisense oligonucleotides following instillation in rats. J Pharmacol Exp Ther 2001;296(3):898-904
  • Khatsenko O, Morgan R, Truong L, et al. Absorption of antisense oligonucleotides in rat intestine: effect of chemistry and length. Antisense Nucleic Acid Drug Dev 2000;10(1):35-44
  • Sussman JD, Argov Z, McKee D, et al. Antisense treatment for myasthenia gravis: experience with monarsen. Ann NY Acad Sci 2008;1132:283-90
  • Brenner T, Hamra-Amitay Y, Evron T, et al. The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis. FASEB J 2003;17(2):214-22
  • Akhtar S. Oral delivery of siRNA and antisense oligonucleotides. J Drug Target 2009;17(7):491-5
  • O'Neill MJ, Bourre L, Melgar S, O'Driscoll CM. Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 2011;16(5-6):203-18
  • Hardee GE. Oral delivery of nucleic acid-based therapeutics. Ther Deliv 2012;3(2):143-5
  • Maher S, Leonard TW, Jacobsen J, Brayden DJ. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv Drug Deliv Rev 2009;61(15):1427-49
  • Brand RM, Iversen PL. Transdermal delivery of antisense oligonucleotides. Methods Mol Med 2005;106:255-69
  • Brand RM, Hannah TL, Norris J, Iversen PL. Transdermal delivery of antisense oligonucleotides can induce changes in gene expression in vivo. Antisense Nucleic Acid Drug Dev 2001;11(1):1-6
  • Sakamoto T, Miyazaki E, Aramaki Y, et al. Improvement of dermatitis by iontophoretically delivered antisense oligonucleotides for interleukin-10 in NC/Nga mice. Gene Ther 2004;11(3):317-24
  • Lin W, Cormier M, Samiee A, et al. Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res 2001;18(12):1789-93
  • Geary RS. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 2009;5(4):381-91
  • Yu RZ, Geary RS, Monteith DK, et al. Tissue disposition of 2′-O-(2-methoxy) ethyl modified antisense oligonucleotides in monkeys. J Pharm Sci 2004;93(1):48-59
  • Geary RS, Tillman LG, Hardee GE. Routes and formulations for delivery of antisense oligonucleotides. In: Crooke ST, editor. Antisense drug technology: principles, strategies, and applications. 2nd edition. CRC Press, Boca Raton, FL, USA; 2007. p. 217-36
  • Graham MJ, Crooke ST, Monteith DK, et al. In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J Pharmacol Exp Ther 1998;286(1):447-58
  • Geary RS, Watanabe TA, Truong L, et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 2001;296(3):890-7
  • Jason TLH, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 2004;201(1):66-83
  • Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 2009;6(3):686-95
  • Stein CA, Hansen JB, Lai J, et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 2010;38(1):e3
  • Overhoff M, Sczakiel G. Phosphorothioate-stimulated uptake of short interfering RNA by human cells. EMBO Rep 2005;6(12):1176-81
  • Koller E, Vincent TM, Chappell A, et al. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 2011;39(11):4795-807
  • Greenberger LM, Horak ID, Filpula D, et al. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther 2008;7(11):3598-608
  • White PJ, Anastasopoulos F, Pouton CW, Boyd BJ. Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev Mol Med 2009;11:e10
  • Yu D, Kandimalla ER, Roskey A, et al. Stereo-enriched phosphorothioate oligodeoxynucleotides: synthesis, biophysical and biological properties. Bioorg Med Chem 2000;8(1):275-84
  • Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999;1489(1):69-84
  • Gupta N, Fisker N, Asselin M-C, et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 2010;5(5):e10682
  • Hildebrandt-Eriksen ES, Aarup V, Persson R, et al. A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Ther 2012;22(3):152-61
  • Fluiter K, ten Asbroek AL, de Wissel MB, et al. In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides. Nucleic Acids Res 2003;31(3):953-62
  • Sazani P, Weller DL, Shrewsbury SB. Safety pharmacology and genotoxicity evaluation of AVI-4658. Int J Toxicol 2010;29(2):143-56
  • Sarepta Therapeutics. 2013. Available from: www.sareptatherapeutics.com [Cited 7 January 2013]
  • Heemskerk HA, de Winter CL, de Kimpe SJ, et al. In vivo comparison of 2′-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 2009;11(3):257-66
  • Fletcher S, Honeyman K, Fall AM, et al. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 2006;8(2):207-16
  • Gebski BL, Mann CJ, Fletcher S, Wilton SD. Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet 2003;12(15):1801-11
  • Arora V, Knapp DC, Reddy MT, et al. Bioavailability and efficacy of antisense morpholino oligomers targeted to c-myc and cytochrome P-450 3A2 following oral administration in rats. J Pharm Sci 2002;91(4):1009-18
  • Levin AA, Yu RZ, Geary RS. Basic principles of the pharmacokinetics of antisense oligonucleotide drugs. In: Crooke ST, editor. Antisense drug technology: principles, strategies, and applications. 2nd edition. CRC Press Boca Raton, FL, USA; 2007. p. 183-216
  • Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol 2005;5(5):550-5
  • Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001;26(1):61-6
  • Iversen PL, Aird KM, Wu R, et al. Cellular uptake of neutral phosphorodiamidate morpholino oligomers. Curr Pharm Biotechnol 2009;10(6):579-88
  • Ghosh C, Iversen PL. Intracellular delivery strategies for antisense phosphorodiamidate morpholino oligomers. Antisense Nucleic Acid Drug Dev 2000;10(4):263-74
  • Wu RP, Youngblood DS, Hassinger JN, et al. Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res 2007;35(15):5182-91
  • Yuan J, Stein DA, Lim T, et al. Inhibition of coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholino oligomers targeting the internal ribosome entry site. J Virol 2006;80(23):11510-19
  • Moulton HM, Moulton JD. Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta 2010;1798(12):2296-303
  • Warren TK, Shurtleff AC, Bavari S. Advanced morpholino oligomers: a novel approach to antiviral therapy. Antiviral Res 2012;94(1):80-8
  • Warren TK, Warfield KL, Wells J, et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat Med 2010;16(9):991-4
  • Swenson DL, Warfield KL, Warren TK, et al. Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection. Antimicrob Agents Chemother 2009;53(5):2089-99
  • Bill BR, Petzold AM, Clark KJ, et al. A primer for morpholino use in zebrafish. Zebrafish 2009;6(1):69-77
  • Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4(1):35-44
  • Youngblood DS, Hatlevig SA, Hassinger JN, et al. Stability of cell-penetrating peptide−morpholino oligomer conjugates in human serum and in cells. Bioconjug Chem 2006;18(1):50-60
  • Arora V, Devi GR, Iversen PL. Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol 2004;5(5):431-9
  • Sazani P, Ness KP, Weller DL, et al. Repeat-dose toxicology evaluation in cynomolgus monkeys of AVI-4658, a phosphorodiamidate morpholino oligomer (PMO) drug for the treatment of Duchenne muscular dystrophy. Int J Toxicol 2011;30(3):313-21
  • Levin AA, Henry SP, Monteith D, Templin MV. Toxicity of antisense oligonucleotides. In: Crooke ST, editor. Antisense drug technology: principles, strategies and applications. Marcel Dekker; New York: 2001. p. 201-67
  • Jason TL, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 2004;201(1):66-83
  • Anderson EM, Miller P, Ilsley D, et al. Gene profiling study of G3139- and Bcl-2-targeting siRNAs identifies a unique G3139 molecular signature. Cancer Gene Ther 2006;13(4):406-14
  • Stessl M, Marchetti-Deschmann M, Winkler J, et al. A proteomic study reveals unspecific apoptosis induction and reduction of glycolytic enzymes by the phosphorothioate antisense oligonucleotide oblimersen in human melanoma cells. J Proteomics 2009;72(6):1019-30
  • Tan W, Loke Y-H, Stein CA, et al. Phosphorothioate oligonucleotides block the VDAC channel. Biophys J 2007;93(4):1184-91
  • Stein CA, Colombini M. Specific VDAC inhibitors: phosphorothioate oligonucleotides. J Bioenerg Biomembr 2008;40(3):157-62
  • Krieg AM, Guga P, Stec W. P-chirality-dependent immune activation by phosphorothioate CpG oligodeoxynucleotides. Oligonucleotides 2003;13(6):491-9
  • Jurk M, Vollmer J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs 2007;21(6):387-401
  • Zent CS, Smith BJ, Ballas ZK, et al. A phase I. clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leuk Lymphoma 2011
  • Ursu R, Carpentier AF. Immunotherapeutic approach with oligodeoxynucleotides containing CpG Motifs (CpG-ODN) in malignant glioma. In: Yamanaka R, editor. Glioma Immunotherapeutic Approaches, Springer, New York. Adv Exp Med Biol 2012;746:95-108
  • Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2011;10(4):499-511
  • Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine 2012;7:2181-95
  • Bedikian AY, Lebbe C, Robert C, et al. Survival in a phase III, randomized, double-blind study of dacarbazine with or without oblimersen (Bcl-2 antisense) in patients with advanced melanoma and low-normal serum lactate dehydrogenase (LDH; AGENDA). J Clin Oncol 2011;29(15 Suppl):8531
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010;327(5962):198-201
  • Swayze EE, Siwkowski AM, Wancewicz EV, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 2007;35(2):687-700
  • Gerety SS, Wilkinson DG. Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 2011;350(2):279-89
  • Sazani P, Ness KP, Weller DL, et al. Chemical and mechanistic toxicology evaluation of exon skipping phosphorodiamidate morpholino oligomers in mdx mice. Int J Toxicol 2011;30(3):322-33
  • Sazani P, Van Ness KP, Weller DL, et al. Repeat-dose toxicology evaluation in cynomolgus monkeys of AVI-4658, a phosphorodiamidate morpholino oligomer (PMO) drug for the treatment of Duchenne muscular dystrophy. Int J Toxicol 2011;30(3):313-21
  • Burrer R, Neuman BW, Ting JP, et al. Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models. J Virol 2007;81(11):5637-48
  • Morcos PA, Li Y, Jiang S. Vivo-morpholinos: a non-peptide transporter delivers morpholinos into a wide array of mouse tissues. Biotechniques 2008;45(6):613-14; 6, 8 passim
  • Hartwig S, Ho J, Pandey P, et al. Genomic characterization of Wilms' tumor suppressor 1 targets in nephron progenitor cells during kidney development. Development 2010;137(7):1189-203
  • Rudin CM, Marshall JL, Huang CH, et al. Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors. Clin Cancer Res 2004;10(21):7244-51
  • Wang J, Lu Z, Wientjes M, Au J. Delivery of siRNA therapeutics: barriers and carriers. AAPS J 2010;12(4):492-503
  • Winkler J. Nanomedicines based on recombinant fusion proteins for targeting therapeutic siRNA oligonucleotides. Ther Deliv 2011;2(7):891-905
  • Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28(2):172-6
  • Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed 2011;51(34):8529-33
  • Xu L, Anchordoquy T. Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 2011;100(1):38-52
  • Gutierrez-Puente Y, Tari AM, Stephens C, et al. Safety, pharmacokinetics, and tissue distribution of liposomal P-ethoxy antisense oligonucleotides targeted to Bcl-2. J Pharmacol Exp Ther 1999;291(2):865-9
  • Tari AM, Gutierrez-Puente Y, Monaco G, et al. Liposome-incorporated Grb2 antisense oligodeoxynucleotide increases the survival of mice bearing bcr-abl-positive leukemia xenografts. Int J Oncol 2007;31(5):1243-50
  • Patel N, Hegele RA. Mipomersen as a potential adjunctive therapy for hypercholesterolemia. Expert Opin Pharmacother 2010;11(15):2569-72
  • Visser ME, Wagener G, Baker BF, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J 2012;33(9):1142-9
  • Atlantic Healthcare. 2012. Available from: http://www.atlantichc.com [Cited 30 September 2012]
  • Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 2006;24(29):4738-45
  • Goemans NM, Tulinius M, van den Akker JT, et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med 2011;364(16):1513-22
  • Saad F, Hotte S, North S, et al. Randomized phase II trial of custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin Cancer Res 2011;17(17):5765-73
  • Bogdahn U, Hau P, Stockhammer G, et al. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 2011;13(1):132-42
  • Paz-Ares L, Douillard JY, Koralewski P, et al. Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 2006;24(9):1428-34
  • Zoubeidi A, Gleave M. Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol 2012;44(10):1646-56
  • Swarbrick MM, Havel PJ, Levin AA, et al. Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology 2009;150(4):1670-9
  • Isis Pharmaceuticals Homepage. 2012. Available from: http://www.isispharm.com [Cited 1 October 2012]
  • Cortes J, Kantarjian H, Ball ED, et al. Phase 2 randomized study of p53 antisense oligonucleotide (cenersen) plus idarubicin with or without cytarabine in refractory and relapsed acute myeloid leukemia. Cancer 2012;118(2):418-27
  • Sridhar SS, Canil CM, Chi KN, et al. A phase II study of the antisense oligonucleotide GTI-2040 plus docetaxel and prednisone as first-line treatment in castration-resistant prostate cancer. Cancer Chemother Pharmacol 2011;67(4):927-33
  • Pal SK, Reckamp K, Yu H, Figlin RA. Akt inhibitors in clinical development for the treatment of cancer.Expert Opin Investig Drugs 2010;19(11):1355-66
  • Thomas SM, Ogagan MJ, Freilino ML, et al. Antitumor mechanisms of systemically administered epidermal growth factor receptor antisense oligonucleotides in combination with docetaxel in squamous cell carcinoma of the head and neck. Mol Pharmacol 2008;73(3):627-38
  • Schimmer AD, Herr W, Hanel M, et al. Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized phase II study. Clin Lymphoma Myeloma Leuk 2011;11(5):433-8
  • Siwak DR, Tari AM, Lopez-Berestein G. Liposomal antisense oligonucleotides for cancer therapy. In: Duzgunes N, editor. Liposomes, Part D. Academic Press. San Diego, CA, USA; Met Enzymol 2004;387:241-53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.