280
Views
20
CrossRef citations to date
0
Altmetric
Original Research

Bone formation in calvarial defects by injectable nanoparticular scaffold loaded with stem cells

, , &
Pages 1653-1662 | Published online: 03 Oct 2013

Bibliography

  • Monteiro BS, Argolo-neto NM, Nardi NB. Treatment of critical defects produced in calvaria of mice with mesenchymal stem cells. An Acad Bras Cienc 2012;84(3):841-51
  • Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfect. Nat Med 1999;5:309-13
  • Meirelles LS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006;119:2204-13
  • Branski LK, Gauglitz GG, Herndon DN, Jeschke MG. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2009;35:171-80
  • Kamolz LP, Kolbus A, Wick N, et al. Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns 2006;32(1):16-19
  • Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications. Cell Prolif 2011;44:86-98
  • Ishige I, Nagamura-Inoue T, Honda MJ, et al. Comparison of mesenchymal stem cells derived from arterial, venous,and Wharton's jelly explants of human umbilical cord. Int J Hematol 2009;90:261-9
  • Kita K, Gauglitz GG, Phan TT, et al. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 2010;19:491-502
  • Wu KH, Zhou B, Lu SH, et al. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem 2007;100:608-16
  • Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials 2003;24:2133-51
  • Liu D, Troczynski T, Wenjea T. Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 2001;22:1721-30
  • Wang F, Li M, Lu Yu, Qi Y. A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 2005;59:916-19
  • Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26:5983-90
  • Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008;26:1-21
  • Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010;28:142-50
  • Shi C, Zhu Y, Ran X, et al. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 2006;133:185-92
  • Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering—An overview. Mar. Drugs 2010;8:2252-66
  • Chesnutt BM, Viano AM, Yuan Y, et al. Design and characterization of a novel chitosan/nanocrystalline calciumphosphate composite scaffold for bone regeneration. J Biomed Mater Res A 2009;88:491-502
  • Chesnutt BM, Yuan Y, Buddington K, et al. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng. Part A 2009;15:2571-9
  • Reves BT, Bumgardner JD, Cole JA, et al. Lyophilization to improve drug delivery for chitosan-calcium phosphate bone scaffold construct: A preliminary investigation. J. Biomed. Mater. Res. B 2009;90:1-10
  • Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003;24(13):2339-49
  • Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 2001;55(3):304-12
  • Huang Z, Tian J, Yu B, et al. A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomed Mater 2009;4(5):55005
  • Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 1998;3:94-117
  • Klein C, Wolke JGC, Groot D. An introduction to Bioceramics. In: Hench LL, Wilson J, editors. Chapter 11 Singapore, World Scientific Publishing; 1993
  • De Lange GL, Donath K. Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials 1989;10:121-5
  • Moreno EC, Kresak M, Zahradnik RT. Fluoridated hydroxyapatite solubility and caries formation. Nature 1974;247:64-5
  • Ozeki K, Fukui Y, Aoki H. Influence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered films. Appl Surf Sci 2007;253:5040-4
  • Kim HW, Kim HE, Knowles JC. Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials 2004;25:3351-8
  • Kasten P, Luginb R, Van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, b-tricalcium phosphate and demineralized bone matrix. Biomaterials 2003;24:2593-603
  • Kasten P, Vogel J, Luginbuhl R, et al. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials 2005;26:5879-89
  • Kogler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med 2004;200:123-35
  • Jahandideh R, Behnamghader A, Rangie M, et al. Sol-gel Synthesis of FHA nanoparticles and CDHA agglomerates from a mixture with a nonstochiometric Ca/P ratio. Key Eng. Mater 2009;396:607-10
  • Heidari Keshel S, Soleimani M, Rezaei M, et al. Evaluation of unrestricted somatic stem cells as a feeder layer to support undifferentiated embryonic stem cells. Mol. Reprod. Dev 2012;79(10):709-18
  • Zong C, Xue D, Yuang W, et al. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast – like cells in poly – lactic- co- glycolic acid scaffolds. Eur Cell Mater 2010;20:109-20
  • Hollingor JO, Kleinschmiolt JC. The critical size defect as an experimental model to test bone repaiur materials. J Craniofac Surg 1990;1:60-8
  • Knabe C, Berger G, Gildenhaar R, et al. Effect of rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins in vitro. J Biomed Mater Res A 2004;69(1):145-54
  • Di Martino A, Sittinger M, Risbud MV. Chitosan:a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26(30):5983-90
  • Elder SH, Nettles DL, Bumgardner JD. Synthesis and characterization of chitosan scaffolds for cartilage-tissue engineering. Methods Mol Biol 2004;238:41-8
  • Li Z, Ramay HR, Hauch KD, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 2005;26(18):3919-28
  • Qi L, Xu Z, Jiang X, et al. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 2004;339(16):2693-700
  • Thein-Han WW, Misra RDK. Three dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. JOM 2009;61(9):41-4
  • Webster TJ, Ergun C, Doremus RH. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000;21:1803-10
  • Tien YC, Chih TT, Lin JH, et al. Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J Bone Joint Surg Br 2004;86(7):1072-6
  • Carey LE, Xu HH, Simon CJ, et al. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005;26(24):5002-14
  • Chen Y, Huang Z, Li X, et al. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J. Nanomater 2012;2012:1-6
  • Zhang X, Zhu L, Lv H, et al. Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci Mater Med 2012;23:1941-9
  • Knaack D, Goad MEP, Aiolova M, et al. Resorbable calcium phosphate bone substitute. J Biomed Mater Res 1998;43:399-409
  • Yaszemski MJ, Payne RG, Hayes WC, et al. The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1995;1:41-52
  • Peter SJ, Lu L, Kim DJ, Mikos AG. Marrow stromal osteoblast function on a poly(propylene fumarate)/b-tricalcium phosphate biodegradable orthopedic composite. Biomaterials 2000;21:1207-13
  • Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64:278-94
  • Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7
  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997;64:295-312
  • Huang Z, Chen Y, Feng QL, Zao W. Invivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells. Front Mater Sci 2011;5(3):301-10
  • Stephan JS, Tholpady SS, Gross B, et al. Injectable tissue-engineered bone repair of a rat calvarial defect. Laryngoscope 2010;120(5):895-901
  • Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004;103:1669-75
  • Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294-301
  • Chang YJ, Tseng CP, Hsu LF, et al. Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biol Int 2006;30:495-9
  • Sanchez-Ramos J. Stem cells from umbilical cord blood. Semin Reprod Med 2006;24:358-69
  • Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33:1402-16
  • Diao Y, Ma Q, Cui F, Zhong Y. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering. J. Biomed. Mater. Res 2009;91A:123-31
  • Rosada C, Justesen J, Melsvik D, et al. The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif. Tissue Int 2003;72:135-42
  • Jang BJ, Byeon YE, Lim JH, et al. Implantation of canine umbilical cord blood-derived mesenchymal stem cells mixed with beta-tricalcium phosphate enhances osteogenesis in bone defect model dogs. J. Vet. Sci 2008;9:387-93
  • Nishida S, Endo N, Yamagiwa H, et al. Number of ostoeprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 1999;17:171-7
  • Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in the three-dimensional collagen sponges. J Cell Biochem 2001;82:583-90
  • Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33:919-26
  • Martino AD, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26(30):5983-90
  • Elder SH, Nettles DL, Bumgardner JD. Synthesis and characterization of chitosan scaffolds for cartilage-tissue engineering. Methods Mol. Biol 2004;238:41-8
  • Li Z, Ramay HR, Hauch KD, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 2005;26(18):3919-28
  • Li X, Gao H, Uo M. Effect of carbon nanotubes on cellular functions in vitro. J. Biomed Mater. Res 2009;91(1):132-9
  • Li X, Fan Y, Watari F. Current investigations into carbon nanotubes for biomedical application. Biomed Mater 2010;5(2):22001
  • Clarke SA, Hoskins NL, Jordan GR, et al. In vitro testing of advanced JAX bone void filler system: species differences in the response of bone marrow stromal cells to β tri-calcium phosphate and carboxymethylcellulose gel. J Mater Sci Mater Med 2007;18(12):2283-90
  • Att W, Hori N, Takeuchi M. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 2009;30(29):5352-63
  • Wang J, Yang R, Gerstenfeld LC, Glimcher MJ. Characterization of demineralized bone matrix-induced osteogenesis in rat calvarial bone defects, III. Gene and protein expression. Calcif Tissue Int 2000;67:314-20
  • Liu G, Sun J, Li Y. Zhou H, and et al. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering, an in vitro and in vivo study. Calcif Tissue Int 2008;83:176-85
  • Erices AA, Allers CI, Conget PA, et al. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 2003;12:555-61
  • Nakagawa R, Watanabe T, Kawano Y, et al. Analysis of maternal and neonatal factors that influence the nucleated and CD34 cells yield for cord blood banking. Transfusion 2004;44:262-7
  • Peault B. Hematopoietic stem cells emergence in embryonic life, developmental hematology revisited. J Hematother 1996;5:369-78
  • Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004;22:625-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.