438
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering

, MD

Bibliography

  • Friedenstein AJ, Shapiro-Piatetzky II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966;16:381-90
  • Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974;2:83-92
  • Friedenstein A. Stromal-hematopoietic interrelationships: maximov's ideas and modern models. Haematol Blood Transfus 1989;32:159-67
  • Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988;136:42-60
  • Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9(5):641-50
  • Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005;11(7-8):1198-211
  • Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007;213(2):341-7
  • Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 2010;14(9):2190-9
  • Hsiong SX, Mooney DJ. Regeneration of vascularized bone. Periodontology 2000;41:109-22
  • Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest 2000;105(12):1663-8
  • Caplan AI. New era of cell-based orthopedic therapies. Tissue Eng Part B Rev 2009;15(2):195-200
  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2012;40(5):363-408
  • Centeno PJ, Faulkner SJ. The use of mesenchymal stem cells in orthopedics stem cells and cancer. Stem Cells 2012;1:173-9
  • Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 1999;48(6):913-27
  • Ohgushi H, Dohi Y, Yoshikawa T, et al. Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. J Biomed Mater Res 1996;32(3):341-8
  • Kotobuki N, Ioku K, Kawagoe D, et al. Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 2005;26(7):779-85
  • Kotobuki N, Kawagoe D, Nomura D, et al. Observation and quantitative analysis of rat bone marrow stromal cells cultured in vitro on newly formed transparent beta-tricalcium phosphate. J Mater Sci Mater Med 2006;17(1):33-4
  • Ohgushi H, Kotobuki N, Funaoka H, et al. Tissue engineered ceramic artificial joint–ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 2005;26(22):4654-61
  • Morishita T, Honoki K, Ohgushi H, et al. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients' mesenchymal stem cells. Artif Organs 2006;30(2):115-18
  • Kawate K, Yajima H, Ohgushi H, et al. Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs 2006;30(12):960-2
  • Mackie EJ, Ahmed YA, Tatarczuch L, et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton Int J Biochem Cell Biol. 2008;40(1):46-62
  • Bruder SP, Caplan AI. Cellular and molecular events during embryonic bone development. Connect Tissue Res 1989;20(1-4):65-71
  • Ohgushi H, Goldberg VM, Caplan AI. Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 1989;7(4):568-78
  • Ohgushi H, Okumura M, Tamai S, et al. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 1990;24(12):1563-70
  • Okumura M, Ohgushi H, Tamai S. Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 1991;12(4):411-16
  • Okumura M, Ohgushi H, Dohi Y, et al. Osteoblastic phenotype expression on the surface of hydroxyapatite ceramics. J Biomed Mater Res 1997;37(1):122-9
  • Ohgushi H, Okumura M. Osteogenic capacity of rat and human marrow cells in porous ceramics. Experiments in athymic (nude) mice. Acta Orthop Scand 1990;61(5):431-4
  • Kotobuki N, Katsube Y, Katou Y, et al. In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplant 2008;17(6):705-12
  • Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 1988;254(2):317-30
  • Ohgushi H, Dohi Y, Katuda T, et al. In vitro bone formation by rat marrow cell culture. J Biomed Mater Res 1996;32(3):333-40
  • Uchimura E, Machida H, Kotobuki N, et al. In-situ visualization and quantification of mineralization of cultured osteogenetic cells. Calcif Tissue Int 2003;73(6):575-83
  • Kihara T, Oshima A, Hirose M, et al. Three-dimensional visualization analysis of in vitro cultured bone fabricated by rat marrow mesenchymal stem cells. Biochem Biophys Res Commun 2004;316(3):943-8
  • Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344:385-6
  • Marcacci M, Kon E, Moukhachev V, et al. Stem cells associated with macroporous bioceramics for long bone repair: 6- To 7-year outcome of a pilot clinical study. Tissue Eng 2007;13:947-55
  • Shayesteh YS, Khojasteh A, Soleimani M, et al. Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106(2):203-9
  • Yoshikawa T, Ohgushi H, Tamai S. Immediate bone forming capability of prefabricated osteogenic hydroxyapatite. J Biomed Mater Res 1996;32(3):481-92
  • Yoshikawa T, Ohgushi H, Nakajima H, et al. In vivo osteogenic durability of cultured bone in porous ceramics: a novel method for autogenous bone graft substitution. Transplantation 2000;69(1):128-34
  • Ye X, Yin X, Yang D, et al. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Tissue Eng Part C Methods 2012;18(7):545-56
  • Rhee YG, Cho NS, Parke CS. Impaction grafting in revision total elbow arthroplasty due to aseptic loosening and bone loss. J Bone Joint Surg Am 2013;95(11):741-7
  • Hasegawa M, Ohashi T, Tani T. Poor outcome of 44 cemented total hip arthroplasties with alumina ceramic heads: clinical evaluation and retrieval analysis after 10-16 years. Acta Orthop Scand 2001;72(5):449-56
  • Tohma Y, Tanaka Y, Ohgushi H, et al. Early bone in-growth ability of alumina ceramic implants loaded with tissue-engineered bone. J Orthop Res 2006;24(4):595-603
  • Takakura Y, Tanaka Y, Kumai T, et al. Ankle arthroplasty using three generations of metal and ceramic prostheses. Clin Orthop Relat Res 2004;424:130-6
  • Ogawa M, Tohma Y, Ohgushi H, et al. Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach. Int J Mol Sci 2012;13(5):5528-41
  • Ueda M, Yamada Y, Ozawa R, et al. Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement. Int J Periodontics Restorative Dent 2005;25(2):129-37
  • Meijer GJ, de Bruijn JD, Koole R, et al. Cell based bone tissue engineering in jaw defects. Biomaterials 2008;29(21):3053-61
  • Matsushima A, Kotobuki N, Tadokoro M, et al. In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate. Artif Organs 2009;33(6):474-81
  • Tadokoro M, Kanai R, Taketani T, et al. New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 2009;154(6):924-30
  • Katsube Y, Kotobuki N, Tadokoro M, et al. Restoration of cellular function of mesenchymal stem cells from a hypophosphatasia patient. Gene Ther 2010;17(4):494-502
  • Gimble JM, Katz AJ, Bunnell BA, et al. Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100:1249-60
  • Gir P, Oni G, Brown SA, et al. Human adipose stem cells: current clinical applications. Plast Reconstr Surg 2012;129:1277
  • Mizuno H, Tobita M, Uysal AC. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012;30(5):804-10
  • Mesimäki K, Lindroos B, Törnwall J, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 2009;38:201-9
  • Sándor GK. Tissue engineering of bone: clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg 2012;2(1):8-11
  • De Ugarte DA, Morizono K, Elabarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003;174:101-9
  • Gun-II I, Shin YW, Lee KB. Do adipose tissue–derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow–derived cells? Osteoarthritis Cartilage 2005;13:845-53
  • Hayashi O, Katsube Y, Hirose M, et al. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 2008;82(3):238-47
  • Caplan AI. Cartilage begets bone versus endochondral myelopoiesis. Clin Orthop Relat Res 1990;261:257-67
  • Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 2002;99:9656-61
  • Akahane M, Ohgushi H, Kuriyama S, et al. Hydroxyapatite ceramics as a carrier of gene-transduced bone marrow cells. J Orthop Sci 2002;7(6):677-82
  • Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004;287(6):H2670-6
  • Silva GV, Litovsky S and Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150-6
  • Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005;112(8):1128-35
  • Oswald J, Boxberger S, Jørgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004;22(3):377-84
  • Janeczek Portalska K, Leferink A, Groen N, et al. Endothelial differentiation of mesenchymal stromal cells. PLoS One 2012;7(10):e46842
  • Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007;62:179-213
  • Kagiwada H, Yashiki T, Ohshima A, et al. Human mesenchymal stem cells as a stable source of VEGF-producing cells. J Tissue Eng Regen Med 2008;2(4):184-9
  • Ohgushi H, Kitamura S, Kotobuki N, et al. Clinical application of marrow mesenchymal stem cells for hard tissue repair. Yonsei Med J 2004;45(Suppl):61-7
  • Inoue K, Ohgushi H, Yoshikawa T, et al. The effect of aging on bone formation in porous hydroxyapatite: biochemical and histological analysis. J Bone Miner Res 1997;12(6):989-94
  • Kim M, Kim C, Choi YS, et al. Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects. Mech Ageing Dev 2012;133(5):215-25
  • Bajek A, Czerwinski M, Olkowska J, et al. Does aging of mesenchymal stem cells limit their potential application in clinical practice? Aging Clin Exp Res 2012;24(5):404-11
  • Kotobuki N, Katsube Y, Hirose M, et al. Surface marker expression of human. IFMBE Proc 2005;10:118-20
  • da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008;26(9):2287-99
  • Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1 cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 2007;109:1298-306
  • Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2007;109:1743-51
  • Wright GJ, Jones M, Puklavec MJ, et al. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 2001;102:173-9
  • Mabuchi Y, Morikawa S, Harada S, et al. LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Rep 2013;1(2):152-65
  • Kuroda Y, Kitada M, Wakao S, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 2010;107(19):8639-43
  • Kuroda Y, Wakao S, Kitada M, et al. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 2013;8(7):1391-415
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-7
  • Cohen CB. Ethical and policy issues surrounding the donation of cryopreserved and fresh embryos for human embryonic stem cell research. Stem Cell Rev 2009;5(2):116-22
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72
  • Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858):1917-20
  • Rhee YH, Ko JY, Chang MY, et al. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 2011;121(6):2326-35
  • Ban H, Nishishita N, Fusaki N, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA 2011;108(34):14234-9
  • Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc 2013;8(3):568-82
  • Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013;341(6146):651-4
  • Kotobuki N, Hirose M, Machida H, et al. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng 2005;11(5-6):663-73
  • Aoki T, Ohnishi H, Oda Y, et al. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Eng Part A 2010;16(7):2197-206
  • Oda Y, Yoshimura Y, Ohnishi H, et al. Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 2010;285(38):29270-8
  • Ohnishi H, Oda Y, Aoki T, et al. A comparative study of induced pluripotent stem cells generated from frozen, stocked bone marrow- and adipose tissue-derived mesenchymal stem cells. J Tissue Eng Regen Med 2012;6(4):261-71
  • Lian Q, Zhang Y, Zhang J, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 2010;121(9):1113-23
  • Tran NT, Trinh QM, Lee GM, et al. Efficient differentiation of human pluripotent stem cells into mesenchymal stem cells by modulating intracellular signaling pathways in a feeder/serum-free system. Stem Cells Dev 2012;21(7):1165-75
  • Hynes K, Menicanin D, Han J, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res 2013;92(9):833-9
  • Go MJ, Takenaka C, Ohgushi H. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities. Exp Cell Res 2008;314(5):1147-54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.