1,001
Views
25
CrossRef citations to date
0
Altmetric
Review

Potential approaches for more successful dendritic cell-based immunotherapy

, , &

Bibliography

  • Ueno H, Schmitt N, Klechevsky E, et al. Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010;234(1):199-212
  • Grouard G, Rissoan M-C, Filgueira L, et al. The enigmatic plasmacytoid t cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997;185(6):1101-12
  • Eckert F, Schmid U. Identification of plasmacytoid t cells in lymphoid hyperplasia of the skin. Arch Dermatol 1989;125(11):1518-24
  • Wollenberg A, Wagner M, Gunther S, et al. Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. 2002;119(5):1096-102
  • Cao W, Rosen DB, Ito T, et al. Plasmacytoid dendritic cell–specific receptor ILT7–FcepsilonRIgamma inhibits Toll-like receptor–induced interferon production. J Exp Med 2006;203(6):1399-405
  • Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284(5421):1835-7
  • Pashenkov M, Goëss G, Wagner C, et al. Phase II trial of a toll-like receptor 9–activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 2006;24(36):5716-24
  • Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol 2005;17(4):273-83
  • Oh S, Perera LP, Burke DS, et al. IL-15/IL-15Rα-mediated avidity maturation of memory CD8+ T cells. P Natl Acad Sci USA 2004;101(42):15154-9
  • Romano E, Rossi M, Ratzinger G, et al. Peptide-loaded Langerhans cells, despite increased IL15 secretion and T-cell activation in vitro, elicit antitumor T-cell responses comparable to peptide-loaded monocyte-derived dendritic cells in vivo. Clin Cancer Res 2011;17(7):1984-97
  • Chu C-C, Ali N, Karagiannis P, et al. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med 2012;209(5):935-45
  • van der Aar AMG, Sylva-Steenland RMR, Bos JD, et al. Cutting edge: loss of TLR2, TLR4, and TLR5 on langerhans cells abolishes bacterial recognition. J Immunol 2007;178(4):1986-90
  • Flacher V, Bouschbacher M, Verronèse E, et al. Human langerhans cells express a specific tlr profile and differentially respond to viruses and gram-positive bacteria. J Immunol 2006;177(11):7959-67
  • Klechevsky E, Morita R, Liu M, et al. Functional specializations of human epidermal langerhans cells and CD14+ dermal dendritic cells. Immunity 2008;29(3):497-510
  • Kuchen S, Robbins R, Sims GP, et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol 2007;179(9):5886-96
  • Rasheed MAU, Latner DR, Aubert RD, et al. IL-21 is a critical cytokine for the generation of virus-specific long-lived plasma cells. J Virol 2013;87(13):7737-46
  • Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation c-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem 2008;283(24):16693-701
  • Haniffa M, Shin A, Bigley V, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012;37(1):60-73
  • Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010;207(6):1247-60
  • Thurner B, Röder C, Dieckmann D, et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 1999;223(1):1-15
  • Berger TG, Strasser E, Smith R, et al. Efficient elutriation of monocytes within a closed system (Elutra(TM)) for clinical-scale generation of dendritic cells. J Immunol Methods 2005;298(1-2):61-72
  • Berger TG, Feuerstein B, Strasser E, et al. Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories(TM). J Immunol Methods 2002;268(2):131-40
  • Banchereau J, Briere F, Caux C, et al. Immunobiology of Dendritic Cells. Annu Rev Immunol 2000;18(1):767-811
  • Ardavín C, Amigorena S, Reis e Sousa CR. Dendritic Cells: immunobiology and Cancer Immunotherapy. Immunity 2004;20(1):17-23
  • Czerniecki BJ, Koski GK, Koldovsky U, et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 2007;67(4):1842-52
  • Dauer M, Obermaier B, Herten J, et al. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol 2003;170(8):4069-76
  • Dauer M, Lam V, Arnold H, et al. Combined use of toll-like receptor agonists and prostaglandin E2 in the FastDC model: rapid generation of human monocyte-derived dendritic cells capable of migration and IL-12p70 production. J Immunol Methods 2008;337(2):97-105
  • Kvistborg P, Boegh M, Pedersen AW, et al. Fast generation of dendritic cells. Cell Immunol 2009;260(1):56-62
  • Chiang CL-L, Hagemann AR, Leskowitz R, et al. Day-4 myeloid dendritic cells pulsed with whole tumor lysate are highly immunogenic and elicit potent anti-tumor responses. PLoS One 2011;6(12):e28732
  • Chiang CL-L, Benencia F, Coukos G. Whole tumor antigen vaccines. Semin Immunol 2010;22(3):132-43
  • Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014;14(2):135-46
  • Neller MA, Lopez JA, Schmidt CW. Antigens for cancer immunotherapy. Sem Immunol 2008;20(5):286-95
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003;300(5617):337-9
  • Sun JC, Williams MA, Bevan MJ. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004;5(9):927-33
  • Janssen EM, Lemmens EE, Wolfe T, et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003;421(6925):852-6
  • Chiang CL, Kandalaft LE, Tanyi J, et al. A dendritic cell vaccine pulsed with autologous hypochlorous Acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 2013;19(17):4801-15
  • Chiang C, Ledermann J, Rad AN, et al. Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol. Immunother 2006;55(11):1384-95
  • Prokopowicz ZM, Arce F, Biedron R, et al. Hypochlorous acid: a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity. J Immunol 2010;184(2):824-35
  • Hagemann AR, Cadungog M, Hagemann IS, et al. Tissue-based immune monitoring I: Tumor core needle biopsies allow in-depth interrogation of the tumor microenvironment. Cancer Biol Ther 2011;12(4):357-66
  • Merogi AJ, Marrogi AJ, Ramesh R, et al. Tumor-host interaction: analysis of cytokines, growth factors, and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 1997;28(3):321-31
  • Freedman RS, Edwards CL, Bowen JM, et al. Viral oncolysates in patients with advanced ovarian cancer. Gynecol Oncol 1988;29(3):337-47
  • Schirrmacher V. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory. Cancer Immunol Immunother 2005;54(6):587-98
  • Möbus V, Horn S, Stock M, Schirrmacher V. Tumor cell vaccination for gynecological tumors. Hybridoma 1993;12:543-7
  • Samaniego L, Wu N, DeLuca N. The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 1997;71(6):4614-25
  • Jugovic P, Hill AM, Tomazin R, et al. Inhibition of major histocompatibility complex class i antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47. J Virol 1998;72(6):5076-84
  • Arroyo PJ, Bash JA, Wallack MK. Active specific immunotherapy with vaccinia colon oncolysate enhances the immunomodulatory and antitumor effects of interleukin-2 and interferon α in a murine hepatic metastasis model. Cancer Immunol. Immunother 1990;31(5):305-11
  • Sinkovics JG. Viral Oncolysates as Human Tumor Vaccines. Int Rev Immunol 1991;7(4):259-87
  • Melcher A, Todryk S, Hardwick N, et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 1998;4(5):581-7
  • Gong J, Chen D, Kashiwaba M, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 1997;3(5):558-61
  • Gong J, Chen D, Kashiwaba M, et al. Reversal of tolerance to human MUC1 antigen in. MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. P Natl Acad Sci USA 1998;95(11) 6279-83
  • Tanaka Y, Koido S, Chen D, et al. Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice. Clin Immunol 2001;101(2):192-200
  • Koido S, Tanaka Y, Chen D, et al. The kinetics of in vivo priming of CD4 and CD8 T cells by dendritic/tumor fusion cells in MUC1-transgenic mice. J Immunol 2002;168(5):2111-17
  • Rosenblatt J, Vasir B, Uhl L, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 2010;117(2):393-402
  • Avigan D, Vasir B, Gong J, et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 2004;10(14):4699-708
  • Chiang CL-L, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol 2011;30(2-3):150-82
  • Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat Immunol 2004;5(10):971-4
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4(7):499-511
  • Caskey M, Lefebvre F, Filali-Mouhim A, et al. Synthetic double-stranded. RNA induces innate immune responses similar to a live viral vaccine in humans. J Exp Med 2011;208(12):2357-66
  • Salazar AM, Levy HB, Ondra S, et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996;38(6):1096-104
  • Thompson KA, Strayer DR, Salvato PD, et al. Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyl:PolyC12U in the treatment of HIV infection. Eur J Clin Microbiol Infect Dis 1996;15(7):580-7
  • Navabi H, Jasani B, Reece A, et al. A clinical grade poly I:C-analogue (Ampligen®) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 2009;27(1):107-15
  • Robinson R, DeVita V, Levy H, et al. A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J Natl Cancer Inst 1976;57(3):599-603
  • Cornell CJ, Smith K, Cornwell Gr, et al. Sytemic effects of intravenous polyriboinosinic-polyribocytidylic acid in man. J Natl Cancer Inst 1976;57:1211-16
  • Freeman A, Al-Bussam N, O’Malley J, et al. Pharmacologic effects of polyinosinic-polycytidylic acid in man. 1977;1(2):79-93
  • Sloat B, Cui Z. Nasal immunization with anthrax protective antigen protein adjuvanted with polyriboinosinic–polyribocytidylic acid induced strong mucosal and systemic immunities. Pharm Res 2006;23(6):1217-26
  • Ichinohe T, Kawaguchi A, Tamura S, et al. Intranasal immunization with H5N1 vaccine plus Polyl:poly C12U, a Toll-like receptor agonist, protects mice against homologous and heterologous virus challenge. Microbes Infect 2007;9(11):1333-40
  • Verdijk RM, Mutis T, Esendam B, et al. Polyriboinosinic polyribocytidylic acid (Poly(I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 1999;163(1):57-61
  • Akiyama Y, Oshita C, Kume A, et al. Alpha-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial. BMC Cancer 2012;12(1):623
  • Okada H, Kalinski P, Ueda R, et al. Induction of CD8+ T-cell responses against novel glioma–associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 2011;29(3):330-6
  • Chiang CL, Kandalaft L, Tanyi JL, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 2013;19(17):4801-15
  • Chiang CL, Ledermann JA, Aitkens E, et al. Oxidation of ovarian epithelial cancer cells by hypochlorous acid enhances immunogenicity and stimulates T cells that recognize autologous primary tumor. Clin Cancer Res 2008;14(15):4898-907
  • ten Brinke A, van Schijndel G, Visser R, et al. Monophosphoryl lipid A plus IFNγ maturation of dendritic cells induces antigen-specific CD8 cytotoxic T cells with high cytolytic potential. Cancer Immunol Immunother 2010;59(8):1185-95
  • Adams S, O’Neill DW, Nonaka D, et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 2008;181(1):776-84
  • van Seters M, van Beurden M, ten Kate FJW, Beckmann I. Ewing PC, Eijkemans MJC, et al. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. New Engl J Med 2008;358(14):1465-73
  • Lu H, Dietsch GN, Matthews M-AH, et al. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 2012;18(2):499-509
  • Northfelt DW, Ramanathan RK, Cohen PA, et al. A Phase I dose-finding study of the novel toll-like receptor 8 agonist VTX-2337 in adult subjects with advanced solid tumors or lymphoma. Clin Cancer Res 2014;20(14):3683-91
  • Dowling DJ, Tan Z, Prokopowicz ZM, et al. The ultra-potent and selective TLR8 agonist VTX-294 activates human newborn and adult leukocytes. PLoS One 2013;8(3):e58164
  • Liu H-M, Newbrough SE, Bhatia SK, et al. Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood 1998;92(10):3730-6
  • Kochenderfer JN, Chien CD, Simpson JL, Gress RE. Synergism between CpG-containing oligodeoxynucleotides and IL-2 causes dramatic enhancement of vaccine-elicited CD8+ T cell responses. J Immunol 2006;177(12):8860-73
  • Sandler AD, Chihara H, Kobayashi G, et al. CpG oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma. Cancer Res 2003;63(2):394-9
  • Jakob T, Walker PS, Krieg AM, et al. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J Immunol 1998;161(6):3042-9
  • Schlom J, Arlen PM, Gulley JL. Cancer vaccines: moving beyond current paradigms. Clin Cancer Res 2007;13(13):3776-82
  • Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest 2007;117(5):1184-94
  • Goldstein MJ, Varghese B, Brody JD, et al. A CpG-loaded tumor cell vaccine induces antitumor CD4+ T cells that are effective in adoptive therapy for large and established tumors. Blood 2011;117(1):118-27
  • Sfondrini L, Rossini A, Besusso D, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol 2006;176(11):6624-30
  • Whitmore MM, DeVeer MJ, Edling A, et al. Synergistic activation of innate immunity by double-stranded RNA and CpG dna promotes enhanced antitumor activity. Cancer Res 2004;64(16):5850-60
  • Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998;92(11):4150-66
  • Oyama T, Ran S, Ishida T, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappaB activation in hemopoietic progenitor cells. J Immunol 1998;160(3):1224-32
  • Takahashi A, Kono K, Ichihara F, et al. Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 2004;53(6):543-50
  • Ohm JE, Shurin MR, Esche C, et al. Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol 1999;163(6):3260-8
  • Dikov MM, Ohm JE, Ray N, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 2005;174(1):215-22
  • Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003;9(5):562-7
  • Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006;24(1):99-146
  • Rini BI, Weinberg V, Fong L, et al. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer 2006;107(1):67-74
  • Motz GT, Santoro SP, Wang L-P, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014;20(6):607-15
  • Kandalaft L, Chiang C, Tanyi J, et al. A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. J Transl Med 2013;11(1):149
  • Korman AJ, Peggs KS, Allison JP. Checkpoint Blockade in Cancer Immunotherapy. Adv Immunol 2006;90:297-339
  • Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012;24(2):207-12
  • Ribas A, Comin-Anduix B, Chmielowski B, et al. Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma. Clin Cancer Res 2009;15(19):6267-76
  • Pen JJ, Keersmaecker BD, Heirman C, et al. Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Ther 2014;21(3):262-71
  • Fransen MF, Ossendorp F, Arens R, Melief CJM. Local immunomodulation for cancer therapy: providing treatment where needed. Oncoimmunology 2013;2(11):e26493
  • Pruitt SK, Boczkowski D, de Rosa N, et al. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol 2011;41(12):3553-63
  • Schwartzentruber DJ, Lawson DH, Richards JM, et al. Treisman J, et al. gp100 Peptide Vaccine and Interleukin-2 in Patients with Advanced Melanoma. N Eng J Med 2011;364(22):2119-27
  • Ellebaek E, Engell-Noerregaard L, Iversen TZ, et al. Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunol Immunother 2012;61(10):1791-804
  • Laheru D, Lutz E, Burke J, et al. Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 2008;14(5):1455-63
  • Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10(9):942-9
  • . Woo EY, Chu CS, Goletz TJ, et al.et al. CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61(12):4766-72
  • Liyanage UK, Moore TT, Joo H-G, et al. Prevalence of Regulatory T Cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002;169(5):2756-61
  • Tang Y, Xu X, Guo S, et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS One 2014;9(3):e91551
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6(4):295-307
  • Berd D, Maguire HC, Mastrangelo MJ. Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res 1986;46(5):2572-7
  • Emens LA, Asquith JM, Leatherman JM, et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 2009;27(35):5911-8
  • Keane MM, Ettenberg SA, Nau MM, et al. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999;59(3):734-41
  • Tsuda N, Chang DZ, Mine T, et al. Taxol increases the amount and T cell activating ability of self-immune stimulatory multimolecular complexes found in ovarian cancer cells. Cancer Res 2007;67(17):8378-87
  • Machiels JP, Reilly RT, Emens LA, et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 2001;61(9):3689-97
  • Wang J, Kobayashi M, Han M, et al. MyD88 is involved in the signalling pathway for Taxol-induced apoptosis and TNF-alpha expression in human myelomonocytic cells. Br J Haematol 2002;118(2):638-45
  • Pfannenstiel LW, Lam SS, Emens LA, et al. Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. Cell Immunol 2010;263(1):79-87
  • Odunsi K, Matsuzaki J, James SR, et al. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol. Res 2014;2(1):37-49
  • Parente-Pereira AC, Whilding LM, Brewig N, et al. Synergistic chemoimmunotherapy of epithelial ovarian cancer using ErbB-retargeted T cells combined with carboplatin. J Immunol 2013;191(5):2437-45
  • Lesterhuis WJ, Salmons J, Nowak AK, et al. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PLoS One 2013;8(4):e61895
  • John J, Ismail M, Riley C, et al. Differential effects of Paclitaxel on dendritic cell function. BMC Immunol 2010;11:14
  • Liseth K, Ersvaer E, Hervig T, Bruserud O. Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed. Biotechnol 2010;2010:692097
  • Bruserud O, Ersvaer E, Olsnes A, Gjertsen BT. Anticancer immunotherapy in combination with proapoptotic therapy. Curr Cancer Drug Targets 2008;8(8):666-75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.