1,130
Views
36
CrossRef citations to date
0
Altmetric
Review

Atoh1 gene therapy in the cochlea for hair cell regeneration

, PhD (Senior Research Fellow) & , PhD (Post-Doctoral Fellow)

Bibliography

  • Dawson PW, Blamey PJ, Rowland LC, et al. Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception. J Speech Hear Res 1992;35(2):401-17
  • Blamey PJ, Ardnt P, Bergeron G, et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiol Neurootol 1996;1:293-306
  • Blamey P, Artieres F, Baskent D, et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiol Neurootol 2013;18(1):36-47
  • Pickles JO. An introduction to the physiology of hearing. Academic press; London: 1988
  • Spoendlin H. The innervation of the cochlea receptor. In: Moller AR, editor. Basic mechanisms in hearing. Academic Press; New York: 1973. p. 185-234
  • Raphael Y, Kim YH, Osumi Y, Izumikawa M. Non-sensory cells in the deafened organ of Corti: approaches for repair. Int J Dev Biol 2007;51(6-7):649-54
  • Taylor RR, Jagger DJ, Forge A. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea. PLoS One 2012;7(1):e30577
  • Fekete DM, Muthukumar S, Karagogeos D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 1998;18(19):7811-21
  • Bermingham N, Hassan B, Price S, et al. Math 1: an essential gene for the generation of inner ear hair cells. Science 1999;284:1837-41
  • Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 2004;7(12):1310-18
  • Shi F, Hu L, Jacques BE, et al. Beta-Catenin is required for hair-cell differentiation in the cochlea. J Neurosci 2014;34(19):6470-9
  • Shi F, Cheng YF, Wang XL, Edge AS. Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3’ enhancer. J Biol Chem 2010;285(1):392-400
  • Jacques BE, Montcouquiol ME, Layman EM, et al. Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea. Development 2007;134(16):3021-9
  • Cai T, Seymour ML, Zhang H, et al. Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti. J Neurosci 2013;33(24):10110-22
  • Xiang M, Gao WQ, Hasson T, Shin JJ. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 1998;125(20):3935-46
  • Wallis D, Hamblen M, Zhou Y, et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 2003;130(1):221-32
  • Lanford PJ, Lan Y, Jiang R, et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 1999;21(3):289-92
  • Yamamoto N, Tanigaki K, Tsuji M, et al. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med 2006;84(1):37-45
  • Zine A, Van de Water T, de Ribaupierre F. Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 2000;127:3373-83
  • Hayashi T, Kokubo H, Hartman BH, et al. Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Dev Biol 2008;316(1):87-99
  • Kiernan AE, Cordes R, Kopan R, et al. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 2005;132(19):4353-62
  • Takebayashi S, Yamamoto N, Yabe D, et al. Multiple roles of Notch signaling in cochlear development. Dev Biol 2007;307(1):165-78
  • Murata J, Tokunaga A, Okano H, Kubo T. Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification. J Comp Neurol 2006;497(3):502-18
  • Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 2006;7(11):837-49
  • Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002;129(10):2495-505
  • Zheng JL, Gao WQ. Overexpression of math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 2000;3(6):580-6
  • Pan N, Jahan I, Kersigo J, et al. A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS One 2012;7(1):e30358
  • Pan N, Jahan I, Kersigo J, et al. Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 2011;275(1-2):66-80
  • Driver EC, Sillers L, Coate TM, et al. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 2013;376(1):86-98
  • Dabdoub A, Puligilla C, Jones JM, et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci USA 2008;105(47):18396-401
  • Cafaro J, Lee GS, Stone JS. Atoh1 expression defines activated progenitors and differentiating hair cells during avian hair cell regeneration. Dev Dyn 2007;236(1):156-70
  • Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science 1988;240(4860):1772-4
  • Forge A, Li L, Nevill G. Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J Comp Neurol 1998;397(1):69-88
  • White PM, Doetzlhofer A, Lee YS, et al. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 2006;441(7096):984-7
  • Wang GP, Chatterjee I, Batts SA, et al. Notch signaling and Atoh1 expression during hair cell regeneration in the mouse utricle. Hear Res 2010;267(1-2):61-70
  • Bramhall NF, Shi F, Arnold K, et al. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Rep 2014;2(3):311-22
  • Cox BC, Chai R, Lenoir A, et al. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 2014;141(4):816-29
  • Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol 1967(Suppl 220):1-44
  • Shi F, Kempfle JS, Edge AS. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci 2012;32(28):9639-48
  • Dechesne CJ, Thomasset M. Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear. Brain Res 1988;468(2):233-42
  • Montcouquiol M, Kelley MW. Planar and vertical signals control cellular differentiation and patterning in the mammalian cochlea. J Neurosci 2003;23(28):9469-78
  • Zheng JL, Gao WQ. Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. J Neurosci 1997;17(21):8270-82
  • Belyantseva IA, Adler HJ, Curi R, et al. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 2000;20(24):RC116
  • Legendre K, Safieddine S, Kussel-Andermann P, et al. alphaII-betaV spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells. J Cell Sci 2008;121(Pt 20):3347-56
  • Zheng J, Shen W, He DZ, et al. Prestin is the motor protein of cochlear outer hair cells. Nature 2000;405(6783):149-55
  • Sakaguchi N, Henzl MT, Thalmann I, et al. Oncomodulin is expressed exclusively by outer hair cells in the organ of Corti. J Histochem Cytochem 1998;46(1):29-40
  • Liu Z, Fang J, Dearman J, et al. In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS One 2014;9(2):e89377
  • Liu ZY, Dearman JA, Cox BC, et al. Age-dependent in vivo conversion of mouse cochlear pillar and deiters’ cells to immature hair cells by atoh1 ectopic expression. J Neurosci 2012;32(19):6600-10
  • Atkinson PJ, Wise AK, Flynn BO, et al. Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs. Plos One 2014;9(7):e102077
  • Ginn SL, Alexander IE, Edelstein ML, et al. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 2013;15(2):65-77
  • Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006;12(3):342-7
  • Wise AK, Hume CR, Flynn BO, et al. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther 2010;18(6):1111-22
  • Shibata SB, Cortez SR, Beyer LA, et al. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010;223(2):464-72
  • James DP, Eastwood H, Richardson RT, O’Leary SJ. Effects of round window dexamethasone on residual hearing in a Guinea pig model of cochlear implantation. Audiol Neurootol 2008;13(2):86-96
  • Kawamoto K, Oh SH, Kanzaki S, et al. The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice. Mol Ther 2001;4(6):575-85
  • Stover T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res 1999;136(1-2):124-30
  • Jero J, Tseng CJ, Mhatre AN, Lalwani AK. A surgical approach appropriate for targeted cochlear gene therapy in the mouse. Hear Res 2001;151(1-2):106-14
  • Shibata SB, Cortez SR, Wiler JA, et al. Hyaluronic acid enhances gene delivery into the cochlea. Hum Gene Ther 2012;23(3):302-10
  • Atkinson PJ, Wise AK, Flynn BO, et al. Neurotrophin gene therapy for sustained neural preservation after deafness. PLoS One 2012;7(12):e52338
  • Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y. Gene transfer into supporting cells of the organ of Corti. Hear Res 2002;173(1-2):187-97
  • Kawamoto K, Ishimoto S, Minoda R, et al. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 2003;23(11):4395-400
  • Stone IM, Lurie DI, Kelley MW, Poulsen DJ. Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther 2005;11(6):843-8
  • Yamasoba T, Yagi M, Roessler BJ, et al. Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac. Hum Gene Ther 1999;10(5):769-74
  • Wise AK, Tu T, Atkinson PJ, et al. The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection. Hear Res 2011;278(1-2):69-76
  • Schuknecht HF, Donovan ED. The pathology of idiopathic sudden sensorineural hearing loss. Arch Otorhinolaryngol 1986;243(1):1-15
  • McGill TJ, Schuknecht HF. Human cochlear changes in noise induced hearing loss. Laryngoscope 1976;86(9):1293-302
  • Gubbels SP, Woessner DW, Mitchell JC, et al. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 2008;455(7212):537-41
  • Shou J, Zheng JL, Gao WQ. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci 2003;23(2):169-79
  • Chen Y, Yu H, Zhang Y, et al. Cotransfection of Pax2 and Math1 promote in situ cochlear hair cell regeneration after neomycin insult. Sci Rep 2013;3:2996
  • Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005;11(3):271-6
  • Kraft S, Hsu C, Brough DE, Staecker H. Atoh1 induces auditory hair cell recovery in mice after ototoxic injury. Laryngoscope 2013;123(4):992-9
  • Yang J, Cong N, Han Z, et al. Ectopic hair cell-like cell induction by Math1 mainly involves direct transdifferentiation in neonatal mammalian cochlea. Neurosci Lett 2013;549:7-11
  • Yang J, Bouvron S, Lv P, et al. Functional features of trans-differentiated hair cells mediated by Atoh1 reveals a primordial mechanism. J Neurosci 2012;32(11):3712-25
  • Yang SM, Chen W, Guo WW, et al. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One 2012;7(9):e46355
  • Izumikawa M, Batts SA, Miyazawa T, et al. Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res 2008;240:52-6
  • Chai R, Kuo B, Wang T, et al. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA 2012;109(21):8167-72
  • Vogels R, Zuijdgeest D, van Rijnsoever R, et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003;77(15):8263-71
  • Mast TC, Kierstead L, Gupta SB, et al. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine 2010;28(4):950-7
  • Schlecker C, Praetorius M, Brough DE, et al. Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther 2011;18(9):884-90
  • Kelly MC, Chang Q, Pan A, et al. Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J Neurosci 2012;32(19):6699-710
  • Parker MA, Cheng YF, Kinouchi H, et al. An independent construct for conditional expression of atonal homolog-1. Human Gene Ther Methods 2014;25(1):1-13
  • Bankiewicz KS, Forsayeth J, Eberling JL, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006;14(4):564-70
  • Hadaczek P, Eberling JL, Pivirotto P, et al. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 2010;18(8):1458-61
  • Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011;365(25):2357-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.