531
Views
36
CrossRef citations to date
0
Altmetric
Review

Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics

, PhD (Principal Scientist, Immunology Section Head) & , PhD (Director)

Bibliography

  • Alvarez-Salas LM. Nucleic acids as therapeutic agents. Curr Top Med Chem 2008;8(15):1379-404
  • Sehgal A, Vaishnaw A, Fitzgerald K. Liver as a target for oligonucleotide therapeutics. J Hepatol 2013;59(6):1354-9
  • Holmlund JT, Monia BP, Kwoh TJ, Dorr FA. Toward antisense oligonucleotide therapy for cancer: ISIS compounds in clinical development. Curr Opin Mol Ther 1999;1(3):372-85
  • Gilboa E, McNamara JII, Pastor F. Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res 2013;19(5):1054-62
  • Henry SP, Geary RS, Yu R, Levin AA. Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors? Curr Opin Investig Drugs 2001;2(10):1444-9
  • Henry SP, Monteith D, Bennett F, Levin AA. Toxicological and pharmacokinetic properties of chemically modified antisense oligonucleotide inhibitors of PKC-alpha and C-raf kinase. Anticancer Drug Des 1997;12(5):409-20
  • Henry SP, Monteith D, Levin AA. Antisense oligonucleotide inhibitors for the treatment of cancer: 2. Toxicological properties of phosphorothioate oligodeoxynucleotides. Anticancer Drug Des 1997;12(5):395-408
  • Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999;1489(1):69-84
  • Monteith DK, Henry SP, Howard RB, et al. Immune stimulation – a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Des 1997;12(5):421-32
  • Schubert D, Levin AA, Kornbrust D, et al. The Oligonucleotide Safety Working Group (OSWG). Nucleic Acid Ther 2012;22(4):211-12
  • Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 2004;17(1):3-16
  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010;9(7):537-50
  • Lindow M, Vornlocher HP, Riley D, et al. Assessing unintended hybridization-induced biological effects of oligonucleotides. Nat Biotechnol 2012;30(10):920-3
  • Rossi S. editor. Australian medicines handbook. The Australian Medicines Handbook Unit Trust; Adelaide: 2013
  • Poluektova L, Krzystyniak K, Desjardins R, et al. In vitro lymphotoxicity and selective T cell immunotoxicity of high doses of acyclovir and its derivatives in mice. Int J Immunopharmacol 1996;18(6-7):429-38
  • Joksic G, Stankovic M, Vasic V, et al. Influence of ribavirin on the micronucleus formation and in vitro proliferation of human lymphocytes. Neoplasma 2000;47(5):283-7
  • Wei H, Huang D, Fortman J, et al. Coadministration of cidofovir and smallpox vaccine reduced vaccination side effects but interfered with vaccine-elicited immune responses and immunity to monkeypox. J Virol 2009;83(2):1115-25
  • Lisignoli G, Monaco MC, Degrassi A, et al. In vitro immunotoxicity of +/- 2’-deoxy-3’-thiacytidine, a new anti-HIV agent. Clin Exp Immunol 1993;92(3):455-9
  • Chen LY, Zhu LY, Yang BS, et al. Regulatory T-cell responses in chronic hepatitis B patients treated with nucleos(t)ide analogs compared with healthy subjects and untreated infected individuals. Hepatogastroenterology 2012;59(120):2582-6
  • Farman CA, Kornbrust DJ. Oligodeoxynucleotide studies in primates: antisense and immune stimulatory indications. Toxicol Pathol 2003;31(Suppl):119-22
  • Henry S, Stecker K, Brooks D, et al. Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J Pharmacol Exp Ther 2000;292(2):468-79
  • Henry SP, Zuckerman JE, Rojko J, et al. Toxicological properties of several novel oligonucleotide analogs in mice. Anticancer Drug Des 1997;12(1):1-14
  • Yu D, Iyer RP, Shaw DR, et al. Hybrid oligonucleotides: synthesis, biophysical properties, stability studies, and biological activity. Bioorg Med Chem 1996;4(10):1685-92
  • Yu D, Kandimalla ER, Roskey A, et al. Stereo-enriched phosphorothioate oligodeoxynucleotides: synthesis, biophysical and biological properties. Bioorg Med Chem 2000;8(1):275-84
  • Zanardi TA, Han SC, Jeong EJ, et al. Pharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2. J Pharmacol Exp Ther 2012;343(2):489-96
  • Advani R, Lum BL, Fisher GA, et al. A phase I trial of aprinocarsen (ISIS 3521/LY900003), an antisense inhibitor of protein kinase C-alpha administered as a 24-hour weekly infusion schedule in patients with advanced cancer. Invest New Drugs 2005;23(5):467-77
  • Advani R, Peethambaram P, Lum BL, et al. A Phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer 2004;100(2):321-6
  • Chen HX, Marshall JL, Ness E, et al. A safety and pharmacokinetic study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusions in patients with refractory solid tumors. Clin Cancer Res 2000;6(4):1259-66
  • Chi KN, Eisenhauer E, Fazli L, et al. A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2’-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst 2005;97(17):1287-96
  • Chi KN, Zoubeidi A, Gleave ME. Custirsen (OGX-011): a second-generation antisense inhibitor of clusterin for the treatment of cancer. Expert Opin Investig Drugs 2008;17(12):1955-62
  • Mani S, Rudin CM, Kunkel K, et al. Phase I clinical and pharmacokinetic study of protein kinase C-alpha antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clin Cancer Res 2002;8(4):1042-8
  • Nemunaitis J, Holmlund JT, Kraynak M, et al. Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J Clin Oncol 1999;17(11):3586-95
  • Rudin CM, Holmlund J, Fleming GF, et al. Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin Cancer Res 2001;7(5):1214-20
  • Waters JS, Webb A, Cunningham D, et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 2000;18(9):1812-23
  • Uhlmann E, Vollmer J. Recent advances in the development of immunostimulatory oligonucleotides. Curr Opin Drug Discov Devel 2003;6(2):204-17
  • Vollmer J, Jepsen JS, Uhlmann E, et al. Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA). Oligonucleotides 2004;14(1):23-31
  • Sugiyama T, Gursel M, Takeshita F, et al. CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. J Immunol 2005;174(4):2273-9
  • Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23(2):165-75
  • Rigby RE, Webb LM, Mackenzie KJ, et al. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J 2014;33(6):542-58
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev 2008;60(7):795-804
  • Henry SP, Giclas PC, Leeds J, et al. Activation of the alternative pathway of complement by a phosphorothioate oligonucleotide: potential mechanism of action. J Pharmacol Exp Ther 1997;281(2):810-16
  • Henry SP, Beattie G, Yeh G, et al. Complement activation is responsible for acute toxicities in rhesus monkeys treated with a phosphorothioate oligodeoxynucleotide. Int Immunopharmacol 2002;2(12):1657-66
  • Jason TL, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 2004;201(1):66-83
  • Shaw DR, Rustagi PK, Kandimalla ER, et al. Effects of synthetic oligonucleotides on human complement and coagulation. Biochem Pharmacol 1997;53(8):1123-32
  • Henry SP, Bolte H, Auletta C, Kornbrust DJ. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a four-week study in cynomolgus monkeys. Toxicology 1997;120(2):145-55
  • Henry SP, Novotny W, Leeds J, et al. Inhibition of coagulation by a phosphorothioate oligonucleotide. Antisense Nucleic Acid Drug Dev 1997;7(5):503-10
  • Sheehan JP, Lan HC. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex. Blood 1998;92(5):1617-25
  • Yu D, Kandimalla ER, Zhao Q, et al. Immunostimulatory activity of CpG oligonucleotides containing non-ionic methylphosphonate linkages. Bioorg Med Chem 2001;9(11):2803-8
  • Henry SP, Grillone LR, Orr JL, et al. Comparison of the toxicity profiles of ISIS 1082 and ISIS 2105, phosphorothioate oligonucleotides, following subacute intradermal administration in Sprague-Dawley rats. Toxicology 1997;116(1-3):77-88
  • Henry SP, Taylor J, Midgley L, et al. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a 4-week study in CD-1 mice. Antisense Nucleic Acid Drug Dev 1997;7(5):473-81
  • Henry SP, Templin MV, Gillett N, et al. Correlation of toxicity and pharmacokinetic properties of a phosphorothioate oligonucleotide designed to inhibit ICAM-1. Toxicol Pathol 1999;27(1):95-100
  • Monteith DK, Geary RS, Leeds JM, et al. Preclinical evaluation of the effects of a novel antisense compound targeting C-raf kinase in mice and monkeys. Toxicol Sci 1998;46(2):365-75
  • Burel SA, Han SR, Lee HS, et al. Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic Acid Ther 2013;23(3):213-27
  • Sparwasser T, Hultner L, Koch ES, et al. Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J Immunol 1999;162(4):2368-74
  • Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 1998;114(6):1133-42
  • Branda RF, Moore AL, Mathews L, et al. Immune stimulation by an antisense oligomer complementary to the rev gene of HIV-1. Biochem Pharmacol 1993;45(10):2037-43
  • McIntyre KW, Lombard-Gillooly K, Perez JR, et al. A sense phosphorothioate oligonucleotide directed to the initiation codon of transcription factor NF-kappa B p65 causes sequence-specific immune stimulation. Antisense Res Dev 1993;3(4):309-22
  • Zhao Q, Temsamani J, Iadarola PL, Agrawal S. Modulation of oligonucleotide-induced immune stimulation by cyclodextrin analogs. Biochem Pharmacol 1996;52(10):1537-44
  • Monteith DK, Levin AA. Synthetic oligonucleotides: the development of antisense therapeutics. Toxicol Pathol 1999;27(1):8-13
  • Kandimalla ER, Manning A, Zhao Q, et al. Mixed backbone antisense oligonucleotides: design, biochemical and biological properties of oligonucleotides containing 2’-5’-ribo- and 3’-5’-deoxyribonucleotide segments. Nucleic Acids Res 1997;25(2):370-8
  • Webb MS, Tortora N, Cremese M, et al. Toxicity and toxicokinetics of a phosphorothioate oligonucleotide against the c-myc oncogene in cynomolgus monkeys. Antisense Nucleic Acid Drug Dev 2001;11(3):155-63
  • Braasch DA, Liu Y, Corey DR. Antisense inhibition of gene expression in cells by oligonucleotides incorporating locked nucleic acids: effect of mRNA target sequence and chimera design. Nucleic Acids Res 2002;30(23):5160-7
  • Senn JJ, Burel S, Henry SP. Non-CpG-containing antisense 2’-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J Pharmacol Exp Ther 2005;314(3):972-9
  • Burel SA, Machemer T, Ragone FL, et al. Unique O-methoxyethyl ribose-DNA chimeric oligonucleotide induces an atypical melanoma differentiation-associated gene 5-dependent induction of type I interferon response. J Pharmacol Exp Ther 2012;342(1):150-62
  • Yu D, Kandimalla ER, Bhagat L, et al. ’Immunomers’ – novel 3’-3’-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Res 2002;30(20):4460-9
  • Yu D, Kandimalla ER, Cong Y, et al. Design, synthesis, and immunostimulatory properties of CpG DNAs containing alkyl-linker substitutions: role of nucleosides in the flanking sequences. J Med Chem 2002;45(20):4540-8
  • Yuan X, Ma Z, Zhou W, et al. Lipid-mediated delivery of peptide nucleic acids to pulmonary endothelium. Biochem Biophys Res Commun 2003;302(1):6-11
  • Upadhyay A, Ponzio NM, Pandey VN. Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides 2008;18(4):329-35
  • Cutrona G, Boffa LC, Mariani MR, et al. The peptide nucleic acid targeted to a regulatory sequence of the translocated c-myc oncogene in Burkitt’s lymphoma lacks immunogenicity: follow-up characterization of PNAEmu-NLS. Oligonucleotides 2007;17(1):146-50
  • Yu D, Zhu FG, Bhagat L, et al. Potent CpG oligonucleotides containing phosphodiester linkages: in vitro and in vivo immunostimulatory properties. Biochem Biophys Res Commun 2002;297(1):83-90
  • Bodera P, Stankiewicz W, Kocik J. Synthetic immunostimulatory oligonucleotides in experimental and clinical practice. Pharmacol Rep 2012;64(5):1003-10
  • Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 2014;32:461-88
  • Brencicova E, Diebold SS. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol 2013;3:37
  • Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2011;10(4):499-511
  • Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009;61(3):195-204
  • Hartmann G, Weeratna RD, Ballas ZK, et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000;164(3):1617-24
  • Krug A, Rothenfusser S, Hornung V, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 2001;31(7):2154-63
  • Sivori S, Carlomagno S, Moretta L, Moretta A. Comparison of different CpG oligodeoxynucleotide classes for their capability to stimulate human NK cells. Eur J Immunol 2006;36(4):961-7
  • Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000;164(2):944-53
  • Marshall JD, Fearon K, Abbate C, et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol 2003;73(6):781-92
  • Rothenfusser S, Hornung V, Krug A, et al. Distinct CpG oligonucleotide sequences activate human gamma delta T cells via interferon-alpha/-beta. Eur J Immunol 2001;31(12):3525-34
  • Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995;374(6522):546-9
  • Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996;157(5):1840-5
  • Heeg K, Dalpke A, Peter M, Zimmermann S. Structural requirements for uptake and recognition of CpG oligonucleotides. Int J Med Microbiol 2008;298(1-2):33-8
  • Vollmer J, Janosch A, Laucht M, et al. Highly immunostimulatory CpG-free oligodeoxynucleotides for activation of human leukocytes. Antisense Nucleic Acid Drug Dev 2002;12(3):165-75
  • Kandimalla ER, Bhagat L, Wang D, et al. Divergent synthetic nucleotide motif recognition pattern: design and development of potent immunomodulatory oligodeoxyribonucleotide agents with distinct cytokine induction profiles. Nucleic Acids Res 2003;31(9):2393-400
  • Agrawal DK, Edwan J, Kandimalla ER, et al. Novel immunomodulatory oligonucleotides prevent development of allergic airway inflammation and airway hyperresponsiveness in asthma. Int Immunopharmacol 2004;4(1):127-38
  • Wang D, Li Y, Yu D, et al. Immunopharmacological and antitumor effects of second-generation immunomodulatory oligonucleotides containing synthetic CpR motifs. Int J Oncol 2004;24(4):901-8
  • Kandimalla ER, Bhagat L, Li Y, et al. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2’-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc Natl Acad Sci USA 2005;102(19):6925-30
  • Kandimalla ER, Bhagat L, Zhu FG, et al. A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif. Proc Natl Acad Sci USA 2003;100(24):14303-8
  • Ishii KJ, Akira S. TLR ignores methylated RNA? Immunity 2005;23(2):111-13
  • Tolcher AW, Rodrigueza WV, Rasco DW, et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014;73(2):363-71
  • Schubert S, Kurreck J. Ribozyme- and deoxyribozyme-strategies for medical applications. Curr Drug Targets 2004;5(8):667-81
  • Mulhbacher J, St-Pierre P, Lafontaine DA. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol 2010;10(5):551-6
  • Morrow PK, Murthy RK, Ensor JD, et al. An open-label, phase 2 trial of RPI.4610 (Angiozyme) in the treatment of metastatic breast cancer. Cancer 2012;118(17):4098-104
  • Sandberg JA, Parker VP, Blanchard KS, et al. Pharmacokinetics and tolerability of an antiangiogenic ribozyme (ANGIOZYME) in healthy volunteers. J Clin Pharmacol 2000;40(12 Pt 2):1462-9
  • Kobayashi H, Eckhardt SG, Lockridge JA, et al. Safety and pharmacokinetic study of RPI.4610 (ANGIOZYME), an anti-VEGFR-1 ribozyme, in combination with carboplatin and paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2005;56(4):329-36
  • Juhl H, Downing SG, Wellstein A, Czubayko F. HER-2/neu is rate-limiting for ovarian cancer growth. Conditional depletion of HER-2/neu by ribozyme targeting. J Biol Chem 1997;272(47):29482-6
  • Foster GR. Past, present, and future hepatitis C treatments. Semin Liver Dis 2004;24(Suppl 2):97-104
  • Mitsuyasu RT, Merigan TC, Carr A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 2009;15(3):285-92
  • Weng DE, Masci PA, Radka SF, et al. A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther 2005;4(6):948-55
  • Francois JC, Lacoste J, Lacroix L, Mergny JL. Design of antisense and triplex-forming oligonucleotides. Methods Enzymol 2000;313:74-95
  • Li Q, Ying D, Dai G, Zheng J. [Synthesis of a triple helix-forming phosphorothioate oligodeoxynucleotides and its effects on coagulation activity of tissue factor (TF) and TF gene expression in endothelial cells]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2003;20(1):71-5, 90
  • Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater 2013;12(11):967-77
  • Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med 2014;6(240):240ps7
  • Manche L, Green SR, Schmedt C, Mathews MB. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 1992;12(11):5238-48
  • Siolas D, Lerner C, Burchard J, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 2005;23(2):227-31
  • Reynolds A, Anderson EM, Vermeulen A, et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 2006;12(6):988-93
  • Kariko K, Bhuyan P, Capodici J, Weissman D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 2004;172(11):6545-9
  • Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23(4):457-62
  • Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009;6(3):659-68
  • Li SD, Chen YC, Hackett MJ, Huang L. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 2008;16(1):163-9
  • Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 2008;16(5):942-6
  • Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release 2008;131(1):64-9
  • Li J, Chen YC, Tseng YC, et al. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 2010;142(3):416-21
  • Ichihara M, Moriyoshi N, Lila AS, et al. Anti-PEG IgM production via a PEGylated nano-carrier system for nucleic acid delivery. Methods Mol Biol 2013;948:35-47
  • Tagami T, Uehara Y, Moriyoshi N, et al. Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA. J Control Release 2011;151(2):149-54
  • Alaaeldin E, Abu Lila AS, Moriyoshi N, et al. The co-delivery of oxaliplatin abrogates the immunogenic response to PEGylated siRNA-lipoplex. Pharm Res 2013;30(9):2344-54
  • Tao W, Mao X, Davide JP, et al. Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol Ther 2011;19(3):567-75
  • Mook OR, Baas F, de Wissel MB, Fluiter K. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 2007;6(3):833-43
  • Lobovkina T, Jacobson GB, Gonzalez-Gonzalez E, et al. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano 2011;5(12):9977-83
  • Peng PH, Huang HS, Lee YJ, et al. Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. J Neurochem 2009;108(3):741-54
  • Leachman SA, Hickerson RP, Schwartz ME, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther 2010;18(2):442-6
  • Fulton A, Peters ST, Perkins GA, et al. Effective treatment of respiratory alphaherpesvirus infection using RNA interference. PLoS One 2009;4(1):e4118
  • Moore CC, Martin EN, Lee G, et al. Eukaryotic translation initiation factor 5A small interference RNA-liposome complexes reduce inflammation and increase survival in murine models of severe sepsis and acute lung injury. J Infect Dis 2008;198(9):1407-14
  • Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA 2004;101(23):8682-6
  • Moschos SA, Jones SW, Perry MM, et al. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetration reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 2007;18(5):1450-9
  • Moschos SA, Williams AE, Lindsay MA. Cell-penetrating-peptide-mediated siRNA lung delivery. Biochem Soc Trans 2007;35(Pt 4):807-10
  • Baker-Herman TL, Fuller DD, Bavis RW, et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 2004;7(1):48-55
  • Dore-Savard L, Roussy G, Dansereau MA, et al. Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther 2008;16(7):1331-9
  • Tumati S, Milnes TL, Yamamura HI, et al. Intrathecal Raf-1-selective siRNA attenuates sustained morphine-mediated thermal hyperalgesia. Eur J Pharmacol 2008;601(1-3):207-8
  • DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007;104(43):17204-9
  • Satriotomo I, Bowen KK, Vemuganti R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem 2006;98(5):1353-68
  • Bisanz K, Yu J, Edlund M, et al. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther 2005;12(4):634-43
  • Chae SS, Paik JH, Furneaux H, Hla T. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 2004;114(8):1082-9
  • Huang YH, Bao Y, Peng W, et al. Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis. Proc Natl Acad Sci USA 2009;106(9):3426-30
  • Yoshizawa T, Hattori Y, Hakoshima M, et al. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm 2008;70(3):718-25
  • Palliser D, Chowdhury D, Wang QY, et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 2006;439(7072):89-94
  • Wu Y, Navarro F, Lal A, et al. Durable protection from Herpes Simplex Virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host Microbe 2009;5(1):84-94
  • Zhang Y, Cristofaro P, Silbermann R, et al. Engineering mucosal RNA interference in vivo. Mol Ther 2006;14(3):336-42
  • Tran MA, Gowda R, Sharma A, et al. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res 2008;68(18):7638-49
  • Thanik VD, Greives MR, Lerman OZ, et al. Topical matrix-based siRNA silences local gene expression in a murine wound model. Gene Ther 2007;14(17):1305-8
  • Abrams MT, Koser ML, Seitzer J, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther 2010;18(1):171-80
  • Banerjee J, Nilsen-Hamilton M. Aptamers: multifunctional molecules for biomedical research. J Mol Med (Berl) 2013;91(12):1333-42
  • Pei X, Zhang J, Liu J. Clinical applications of nucleic acid aptamers in cancer. Mol Clin Oncol 2014;2(3):341-8
  • Gupta S, Hirota M, Waugh SM, et al. Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem 2014;289(12):8706-19
  • Thaler S, Fiedorowicz M, Choragiewicz TJ, et al. Toxicity testing of the VEGF inhibitors bevacizumab, ranibizumab and pegaptanib in rats both with and without prior retinal ganglion cell damage. Acta Ophthalmol 2010;88(5):e170-6
  • Foy JW, Rittenhouse K, Modi M, Patel M. Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J Ocul Pharmacol Ther 2007;23(5):452-66
  • Semeraro F, Morescalchi F, Duse S, et al. Systemic thromboembolic adverse events in patients treated with intravitreal anti-VEGF drugs for neovascular age-related macular degeneration: an overview. Expert Opin Drug Saf 2014;13(6):785-802
  • Rosenberg JE, Bambury RM, Van Allen EM, et al. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs 2014;32(1):178-87
  • Becker RC, Chan MY. REG-1, a regimen comprising RB-006, a Factor IXa antagonist, and its oligonucleotide active control agent RB-007 for the potential treatment of arterial thrombosis. Curr Opin Mol Ther 2009;11(6):707-15
  • Gorczyca ME, Nair SC, Jilma B, et al. Inhibition of tissue factor pathway inhibitor by the aptamer BAX499 improves clotting of hemophilic blood and plasma. J Thromb Haemost 2012;10(8):1581-90
  • Aravind A, Jeyamohan P, Nair R, et al. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng 2012;109(11):2920-31
  • Gottlieb P, Utz PJ, Robinson W, Steinman L. Clinical optimization of antigen specific modulation of type 1 diabetes with the plasmid DNA platform. Clin Immunol 2013;149(3):297-306
  • Hammer SM, Sobieszczyk ME, Janes H, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med 2013;369(22):2083-92
  • Ondondo B, Brennan C, Nicosia A, et al. Absence of systemic toxicity changes following intramuscular administration of novel pSG2.HIVconsv DNA, ChAdV63.HIVconsv and MVA.HIVconsv vaccines to BALB/c mice. Vaccine 2013;31(47):5594-601
  • Rodriguez B, Asmuth DM, Matining RM, et al. Safety, tolerability, and immunogenicity of repeated doses of dermavir, a candidate therapeutic HIV vaccine, in HIV-infected patients receiving combination antiretroviral therapy: results of the ACTG 5176 trial. J Acquir Immune Defic Syndr 2013;64(4):351-9
  • Alvarez RD, Sill MW, Davidson SA, et al. A phase II trial of intraperitoneal EGEN-001, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2014;133(3):433-8
  • Anwer K, Kelly FJ, Chu C, et al. Phase I trial of a formulated IL-12 plasmid in combination with carboplatin and docetaxel chemotherapy in the treatment of platinum-sensitive recurrent ovarian cancer. Gynecol Oncol 2013;131(1):169-73
  • Kim YK, Cho CS, Cho MH, Jiang HL. Spermine-alt-poly(ethylene glycol) polyspermine as a safe and efficient aerosol gene carrier for lung cancer therapy. J Biomed Mater Res A 2014;102(7):2230-7
  • Oliveira PH, Mairhofer J. Marker-free plasmids for biotechnological applications - implications and perspectives. Trends Biotechnol 2013;31(9):539-47
  • Si-Tayeb K, Noto FK, Sepac A, et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 2010;10:81
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76
  • Chace JH, Hooker NA, Mildenstein KL, et al. Bacterial DNA-induced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 1997;84(2):185-93
  • Clark KL, Hughes SA, Bulsara P, et al. Pharmacological characterization of a novel ENaCalpha siRNA (GSK2225745) with potential for the treatment of cystic fibrosis. Mol Ther Nucleic Acids 2013;2:e65
  • Khairuddin N, Blake SJ, Firdaus F, et al. In vivo comparison of local versus systemic delivery of immunostimulating siRNA in HPV-driven tumours. Immunol Cell Biol 2014;92(2):156-63
  • Nguyen DN, Chen SC, Lu J, et al. Drug delivery-mediated control of RNA immunostimulation. Mol Ther 2009;17(9):1555-62
  • Weber C, Muller C, Podszuweit A, et al. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology 2012;136(1):64-77
  • Cheng CJ, Saltzman WM, Slack FJ. Canonical and non-canonical barriers facing antimiR cancer therapeutics. Curr Med Chem 2013;20(29):3582-93
  • Dobrovolskaia MA, McNeil SE. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Drug Deliv 2015; In press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.