337
Views
8
CrossRef citations to date
0
Altmetric
Review

The ‘sweet’ spot of cellular pluripotency: protein glycosylation in human pluripotent stem cells and its applications in regenerative medicine

, PhD, , & , PhD

Bibliography

  • Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1999;1473:4-8
  • Wang YC, Peterson SE, Loring JF. Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 2014;24:143-60
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72
  • Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013;153:1228-38
  • Chin MH, Pellegrini M, Plath K, Lowry WE. Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 2010;7:263-9
  • Guenther MG, Frampton GM, Soldner F, et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 2010;7:249-57
  • Muller FJ, Laurent LC, Kostka D, et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 2008;455:401-5
  • Munoz J, Low TY, Kok YJ, et al. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Mol Syst Biol 2011;7:550
  • Phanstiel DH, Brumbaugh J, Wenger CD, et al. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods 2011;8:821-7
  • Bock C, Kiskinis E, Verstappen G, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011;144:439-52
  • Nazor KL, Altun G, Lynch C, et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 2012;10:620-34
  • Osafune K, Caron L, Borowiak M, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008;26:313-15
  • Chang KH, Nelson AM, Fields PA, et al. Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp Cell Res 2008;314:2930-40
  • Chetty S, Pagliuca FW, Honore C, et al. A simple tool to improve pluripotent stem cell differentiation. Nat Methods 2013;10:553-6
  • Shental-Bechor D, Levy Y. Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struct Biol 2009;19:524-33
  • Haltiwanger RS. Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol 2002;12:593-8
  • Balog CI, Mayboroda OA, Wuhrer M, et al. Mass spectrometric identification of aberrantly glycosylated human apolipoprotein C-III peptides in urine from Schistosoma mansoni-infected individuals. Mol Cell Proteomics 2010;9:667-81
  • Fogel AI, Li Y, Giza J, et al. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J Biol Chem 2010;285:34864-74
  • Reid CW, Fulton KM, Twine SM. Never take candy from a stranger: the role of the bacterial glycome in host-pathogen interactions. Future Microbiol 2010;5:267-88
  • Rudd PM, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science 2001;291:2370-6
  • Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol 2008;8:874-87
  • Yan Q, Yao D, Wei LL, et al. O-fucose modulates Notch-controlled blood lineage commitment. Am J Pathol 2010;176:2921-34
  • Seth A, Machingo QJ, Fritz A, Shur BD. Core fucosylation is required for midline patterning during zebrafish development. Dev Dyn 2010;239:3380-90
  • Murrey HE, Ficarro SB, Krishnamurthy C, et al. Identification of the plasticity-relevant fucose-alpha(1-2)-galactose proteome from the mouse olfactory bulb. Biochemistry 2009;48:7261-70
  • Shi SL, Stanley P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci USA 2003;100:5234-9
  • Xia L, McDaniel JM, Yago T, et al. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 2004;104:3091-6
  • Sparks SE, Krasnewich DM. Congenital disorders of N-linked glycosylation pathway overview. In: Pagon RA, Adam MP, Ardinger HH, et al. editors. Gene reviews. University of Washington, Seattle. 1993
  • Kraushaar DC, Rai S, Condac E, et al. Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem 2012;287:22691-700
  • Kraushaar DC, Yamaguchi Y, Wang L. Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem 2010;285:5907-16
  • Avsar-Ban E, Ishikawa H, Manya H, et al. Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 2010;20:1089-102
  • Weinhold B, Sellmeier M, Schaper W, et al. Deficits in sialylation impair podocyte maturation. J Am Soc Nephrol 2012;23:1319-28
  • Fernandez-Valdivia R, Takeuchi H, Samarghandi A, et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 2011;138:1925-34
  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13:448-62
  • Andrews PW, Banting G, Damjanov I, et al. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma 1984;3:347-61
  • Kannagi R, Cochran NA, Ishigami F, et al. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 1983;2:2355-61
  • Kannagi R, Levery SB, Ishigami F, et al. New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem 1983;258:8934-42
  • Pera MF, Blasco-Lafita MJ, Cooper S, et al. Analysis of cell-differentiation lineage in human teratomas using new monoclonal antibodies to cytostructural antigens of embryonal carcinoma cells. Differentiation 1988;39:139-49
  • Satomaa T, Heiskanen A, Mikkola M, et al. The N-glycome of human embryonic stem cells. BMC Cell Biol 2009;10:42
  • Hasehira K, Tateno H, Onuma Y, et al. Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Mol Cell Proteomics 2012;11:1913-23
  • Draber P, Stanley P. Cytotoxicity of plant lectins for mouse embryonal carcinoma cells. Somat Cell Mol Genet 1984;10:435-43
  • Kosmehl H, Langbein L, Katenkamp D. Lectin histochemistry of human testicular germ cell tumors. Neoplasma 1989;36:29-39
  • Lee MC, Talerman A, Oosterhuis JW, Damjanov I. Lectin histochemistry of classic and spermatocytic seminoma. Arch Pathol Lab Med 1985;109:938-42
  • Muramatsu T, Gachelin G, Damonneville M, et al. Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA. Cell 1979;18:183-91
  • Teshima S, Hirohashi S, Shimosato Y, et al. Histochemically demonstrable changes in cell surface carbohydrates of human germ cell tumors. Lab Invest 1984;50:271-7
  • Tateno H, Toyota M, Saito S, et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem 2011;286:20345-53
  • Toyoda M, Yamazaki-Inoue M, Itakura Y, et al. Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 2011;16:1-11
  • Wang YC, Nakagawa M, Garitaonandia I, et al. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Res 2011;21:1551-63
  • Jones JC, Sabatini K, Liao X, et al. Melanocytes derived from transgene-free human induced pluripotent stem cells. J Invest Dermatol 2013;133:2104-8
  • An HJ, Gip P, Kim J, et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol Cell Proteomics 2012;11:M111.010660
  • Jang H, Kim TW, Yoon S, et al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012;11(1):62-74
  • Dowd CJ, Cooney CL, Nugent MA. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Biol Chem 1999;274:5236-44
  • Faham S, Hileman RE, Fromm JR, et al. Heparin structure and interactions with basic fibroblast growth factor. Science 1996;271:1116-20
  • Yayon A, Klagsbrun M, Esko JD, et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991;64:841-8
  • Duchesne L, Tissot B, Rudd TR, et al. N-glycosylation of fibroblast growth factor receptor 1 regulates ligand and heparan sulfate co-receptor binding. J Biol Chem 2006;281:27178-89
  • Hayward P, Kalmar T, Arias AM. Wnt/Notch signalling and information processing during development. Development 2008;135:411-24
  • Tamama K, Kawasaki H, Wells A. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol 2010;2010:795385
  • Fuerer C, Habib SJ, Nusse R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev Dyn 2010;239:184-90
  • Komekado H, Yamamoto H, Chiba T, Kikuchi A. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 2007;12:521-34
  • Kraushaar DC, Dalton S, Wang L. Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem 2013;394(6):741-51
  • Sasaki N, Shinomi M, Hirano K, et al. LacdiNAc (GalNAcbeta1-4GlcNAc) contributes to self-renewal of mouse embryonic stem cells by regulating leukemia inhibitory factor/STAT3 signaling. Stem Cells 2011;29:641-50
  • Sasaki N, Okishio K, Ui-Tei K, et al. Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J Biol Chem 2008;283:3594-606
  • Izumikawa T, Sato B, Kitagawa H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Sci Rep 2014;4:3701
  • Rillahan CD, Antonopoulos A, Lefort CT, et al. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat Chem Biol 2012;8:661-8
  • Rillahan CD, Brown SJ, Register AC, et al. High-throughput screening for inhibitors of sialyl- and fucosyltransferases. Angew Chem 2011;50:12534-7
  • Tang C, Lee AS, Volkmer JP, et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 2011;29:829-34
  • Boheler KR, Bhattacharya S, Kropp EM, et al. A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem cell Reports 2014;3:185-203
  • Vickers DA, Kulik M, Hincapie M, et al. Lectin-functionalized microchannels for characterizing pluripotent cells and early differentiation. Biomicrofluidics 2012;6:24122-2412210
  • Otsuji TG, Bin J, Yoshimura A, et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem cell Reports 2014;2:734-45
  • Zakrzewski JL, van den Brink MR, Hubbell JA. Overcoming immunological barriers in regenerative medicine. Nat Biotechnol 2014;32:786-94
  • Fu X. The immunogenicity of cells derived from induced pluripotent stem cells. Cel Mol Immunol 2014;11:14-16
  • Okano H, Nakamura M, Yoshida K, et al. Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 2013;112:523-33
  • Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011;474:212-15
  • Scheiner ZS, Talib S, Feigal EG. The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J Biol Chem 2014;289:4571-7
  • van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008;9:593-601
  • Saxon E, Bertozzi CR. Chemical and biological strategies for engineering cell surface glycosylation. Annu Rev Cell Dev Biol 2001;17:1-23
  • Du J, Yarema KJ. Carbohydrate engineered cells for regenerative medicine. Adv Drug Deliv Rev 2010;62:671-82
  • Cherry AB, Daley GQ. Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med 2013;64:277-90
  • Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012;481:295-305
  • Freeze HH, Ng BG. Golgi glycosylation and human inherited diseases. Cold Spring Harb Perspect Biol 2011;3:a005371
  • Raval KK, Tao R, White BE, et al. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 2015;290(5):3121-36
  • Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports 2014;2:205-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.