2,119
Views
129
CrossRef citations to date
0
Altmetric
Review

Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions

, &

Bibliography

  • Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update a report from the American Heart Association. Circulation 2013;127(1):e6-e245
  • MacGrogan D, Luna-Zurita L, de la Pompa JL. Notch signaling in cardiac valve development and disease. Birt Defects Res A Clin Mol Teratol 2011;91(6):449-59
  • Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis 2005;5(11):685-94
  • Yacoub MH, Takkenberg JJM. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med 2005;2(2):60-1
  • El-Hamamsy I, Eryigit Z, Stevens L-M, et al. Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial. Lancet 2010;376(9740):524-31
  • Juthier F, Vincentelli A, Pinçon C, et al. Reoperation after the Ross procedure: incidence, management, and survival. Ann Thorac Surg 2012;93(2):598-604
  • Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J 2012;33(19):2451-96
  • Latif N, Sarathchandra P, Taylor PM, et al. Localization and pattern of expression of extracellular matrix components in human heart valves. J Heart Valve Dis 2005;14(2):218-27
  • Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: The need for naturally engineered solutions. Adv Drug Deliv Rev 2011;63(4–5):242-68
  • MacGrogan D, Luxán G, Driessen-Mol A, et al. How to make a heart valve: From Embryonic Development to Bioengineering of Living Valve Substitutes. Cold Spring Harb Perspect Med 2014;4(11):a013912
  • Ho SY. Structure and anatomy of the aortic root. Eur Heart J Cardiovasc Imaging 2009;10(1):i3-i10
  • Charitos EI, Sievers H-H. Anatomy of the aortic root: implications for valve-sparing surgery. Ann Cardiothorac Surg 2013;2(1):53-6
  • Butcher JT, Nerem RM. Valvular endothelial cells regulate the phenotype of interstitial cells in Co-culture: effects of Steady Shear Stress. Tissue Eng 2006;12(4):905-15
  • Dagum P, Green GR, Nistal FJ, et al. Deformational dynamics of the aortic root modes and physiologic determinants. Circulation 1999;100(Suppl 2):II54-62
  • Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Philos Trans R Soc B Biol Sci 2007;362(1484):1369-91
  • Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam 2011;2011:263870 10.4061/2011/263870
  • Thubrikar MJ, Aouad J, Nolan SP. Comparison of the in vivo and in vitro mechanical properties of aortic valve leaflets. J Thorac Cardiovasc Surg 1986;92(1):29-36
  • Butcher JT, Markwald RR. Valvulogenesis: the moving target. Philos Trans R Soc B Biol Sci 2007;362(1484):1489-503
  • Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol 2007;171(5):1407-18
  • Latif N, Sarathchandra P, Chester AH, Yacoub MH. Expression of smooth muscle cell markers and co-activators in calcified aortic valves. Eur Heart J 2014;eht547. [Epub ahead of print]
  • Chen JH, Yip CYY, Sone ED, Simmons CA. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol 2009;174:1109-19
  • Mahler GJ, Farrar EJ, Butcher JT. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler Thromb Vasc Biol 2013;33(1):121-30
  • Yip CYY, Chen J-H, Zhao R, Simmons CA. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol 2009;29(6):936-42
  • Bäck M, Gasser TC, Michel J-B, Caligiuri G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res 2013;99(2):232-41
  • Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res 2004;95(5):459-70
  • Brown JW, Ruzmetov M, Vijay P, et al. Closed transventricular aortic valvotomy for critical aortic stenosis in neonates: outcomes, risk factors, and reoperations. Ann Thorac Surg 2006;81(1):236-42
  • Pibarot P, Dumesnil JG. Prosthetic heart valves selection of the optimal prosthesis and long-term management. Circulation 2009;119(7):1034-48
  • Misawa Y. Valve-related complications after mechanical heart valve implantation. Surg Today 2014. [Epub ahead of print]
  • Masuda M, Kado H, Ando Y, et al. Intermediate-term results after the aortic valve replacement using bileaflet mechanical prosthetic valve in children. Eur J Cardio Thorac Surg Off J Eur Assoc Cardio Thorac Surg 2008;34(1):42-7
  • Songur CM, Simsek E, Ozen A, et al. Long term results comparing mechanical and biological prostheses in the tricuspid valve position: which valve types are better - mechanical or biological prostheses? Heart Lung Circ 2014;23(12):1175-8
  • Frendl CM, Tucker SM, Khan NA, et al. Endothelial retention and phenotype on carbonized cardiovascular implant surfaces. Biomaterials 2014;35(27):7714-23
  • Fallon AM, Shah N, Marzec UM, et al. Flow and thrombosis at orifices simulating mechanical heart valve leakage regions. J Biomech Eng 2006;128(1):30-9
  • Singhal P, Luk A, Butany J. Bioprosthetic Heart valves: Impact of Implantation on Biomaterials. Int Sch Res Not 2013;2013:e728791
  • Hammermeister K, Sethi GK, Henderson WG, et al. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol 2000;36(4):1152-8
  • Silberman S, Oren A, Dotan M, et al. Aortic valve replacement: Choice Between Mechanical Valves and Bioprostheses. J Card Surg 2008;23(4):299-306
  • Gong G, Seifter E, Lyman WD, et al. Bioprosthetic cardiac valve degeneration: role of inflammatory and immune reactions. J Heart Valve Dis 1993;2(6):684-93
  • Welke KF, Wu Y, Grunkemeier GL, et al. Long-term results after carpentier-edwards pericardial aortic valve implantation, with attention to the impact of age. Heart Surg Forum 2011;14(3):E160-5
  • Stelzer P. The ross procedure: State of the Art 2011. Semin Thorac Cardiovasc Surg 2011;23(2):115-23
  • Kallio M, Pihkala J, Sairanen H, Mattila I. Long-term results of the ross procedure in a population-based follow-up†. Eur J Cardiothorac Surg 2015;47(5):e164-e170 10.1093/ejcts/ezv004
  • Sacks MS, Schoen FJ, Mayer JE. Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 2009;11(1):289-313
  • Neumann A, Sarikouch S, Breymann T, et al. Early systemic cellular immune response in children and young adults receiving decellularized fresh allografts for pulmonary valve replacement. Tissue Eng Part A 2014;20(5-6):1003-11
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32(12):3233-43
  • Konertz W, Dohmen PM, Liu J, et al. Hemodynamic characteristics of the Matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation. J Heart Valve Dis 2005;14(1):78-81
  • Dohmen PM, da Costa F, Holinski S, et al. Is there a possibility for a glutaraldehyde-free porcine heart valve to grow? Eur Surg Res 2006;38(1):54-61
  • Kneib C, von Glehn CQC, Costa FDA, et al. Evaluation of humoral immune response to donor HLA after implantation of cellularized versus decellularized human heart valve allografts. Tissue Antigens 2012;80(2):165-74
  • Bloch O, Golde P, Dohmen PM, et al. Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng Part A 2011;17(19-20):2399-405
  • Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 2008;29(8):1065-74
  • Paniagua Gutierrez JR, Berry H, Korossis S, et al. Regenerative potential of low-concentration SDS-decellularized porcine aortic valved conduits in vivo. Tissue Eng Part A 2015;21(1-2):332-42
  • Friedrich LH, Jungebluth P, Sjöqvist S, et al. Preservation of aortic root architecture and properties using a detergent-enzymatic perfusion protocol. Biomaterials 2014;35(6):1907-13
  • Jordan JE, Williams JK, Lee S-J, et al. Bioengineered self-seeding heart valves. J Thorac Cardiovasc Surg 2012;143(1):201-8
  • Lim H-G, Kim GB, Jeong S, Kim YJ. Development of a next-generation tissue valve using a glutaraldehyde-fixed porcine aortic valve treated with decellularization, α-galactosidase, space filler, organic solvent and detoxification. Eur J Cardiothorac Surg 2014;ezu385 [Epub ahead of print]
  • Flameng W, De Visscher G, Mesure L, et al. Coating with fibronectin and stromal cell–derived factor-1α of decellularized homografts used for right ventricular outflow tract reconstruction eliminates immune response–related degeneration. J Thorac Cardiovasc Surg 2014;147(4):1398-404
  • Akhyari P, Kamiya H, Gwanmesia P, et al. In vivo functional performance and structural maturation of decellularised allogenic aortic valves in the subcoronary position. Eur J Cardiothorac Surg 2010;38(5):539-46
  • Zhou J, Fritze O, Schleicher M, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 2010;31(9):2549-54
  • Bayrak A, Tyralla M, Ladhoff J, et al. Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 2010;31(14):3793-803
  • Takagi K, Fukunaga S, Nishi A, et al. In vivo recellularization of plain decellularized xenografts with specific cell characterization in the systemic circulation: Histological and Immunohistochemical Study. Artif Organs 2006;30(4):233-41
  • Arai S, Orton EC. Immunoblot detection of soluble protein antigens from sodium dodecyl sulfate- and sodium deoxycholate-treated candidate bioscaffold tissues. J Heart Valve Dis 2009;18(4):439-43
  • Ota T, Taketani S, Iwai S, et al. Novel method of decellularization of porcine valves using polyethylene glycol and gamma irradiation. Ann Thorac Surg 2007;83(4):1501-7
  • Jiao T, Clifton RJ, Converse GL, Hopkins RA. Measurements of the effects of decellularization on viscoelastic properties of tissues in ovine, saboon, and human heart valves. Tissue Eng Part A 2012;18(3-4):423-31
  • Lauten A, Laube A, Schubert H, et al. Transcatheter treatment of tricuspid regurgitation by caval valve implantation-experimental evaluation of decellularized tissue valves in central venous position: Decellularized Heterotopic Valves in Severe TR. Catheter Cardiovasc Interv 2015;85(1):150-60
  • Honge JL, Funder J, Hansen E, et al. Recellularization of aortic valves in pigs. Eur J Cardio Thorac Surg Off J Eur Assoc Cardio Thorac Surg 2011;39(6):829-34
  • Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT® in pediatric patients. Eur J Cardiothorac Surg 2003;23(6):1002-6
  • Brown JW, Ruzmetov M, Eltayeb O, et al. Performance of SynerGraft decellularized pulmonary homograft in patients undergoing a Ross procedure. Ann Thorac Surg 2011;91(2):416-22
  • Perri G, Polito A, Esposito C, et al. Early and late failure of tissue-engineered pulmonary valve conduits used for right ventricular outflow tract reconstruction in patients with congenital heart disease. Eur J Cardio Thorac Surg Off J Eur Assoc Cardio Thorac Surg 2012;41(6):1320-5
  • Voges I, Bräsen JH, Entenmann A, et al. Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur J Cardiothorac Surg 2013;44(4):e272-9
  • Lichtenberg A, Tudorache I, Cebotari S, et al. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 2006;27(23):4221-9
  • Lichtenberg A, Tudorache I, Cebotari S, et al. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 2006;114(1 Suppl):I559-65
  • Tudorache I, Calistru A, Baraki H, et al. Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Eng Part A 2013;19(15-16):1686-94
  • Theodoridis K, Tudorache I, Calistru A, et al. Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep. Biomaterials 2015;52:221-8
  • Sewell-Loftin MK, Chun YW, Khademhosseini A, Merryman WD. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology. J Cardiovasc Transl Res 2011;4(5):658-71
  • Claiborne TE, Slepian MJ, Hossainy S, Bluestein D. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Devices 2012;9(6):577-94
  • Neidert MR, Tranquillo RT. Tissue-engineered valves with commissural alignment. Tissue Eng 2006;12(4):891-903
  • Ye Q, Zünd G, Benedikt P, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 2000;17(5):587-91
  • Flanagan TC, Cornelissen C, Koch S, et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 2007;28(23):3388-97
  • Flanagan TC, Sachweh JS, Frese J, et al. In Vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A 2009;15(10):2965-76
  • Alfonso AR, Rath S, Rafiee P, et al. Glycosaminoglycan entrapment by fibrin in engineered heart valve tissues. Acta Biomater 2013;9(9):8149-57
  • Van Loosdregt IAEW, Argento G, Driessen-Mol A, et al. Cell-mediated retraction versus hemodynamic loading – A delicate balance in tissue-engineered heart valves. J Biomech 2014;47(9):2064-69 10.1016/j.jbiomech.2013.10.049
  • Pérez RA, Won J-E, Knowles JC, Kim H-W. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 2013;65(4):471-96
  • Sodian R, Sperling JS, Martin DP, et al. Technical report: fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng 2000;6(2):183-8
  • Filova E, Straka F, Mirejovsky T, et al. Tissue-engineered heart valves. Physiol Res 2009;58.S141-58
  • Shinoka T, Breuer CK, Tanel RE, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 1995;60(6 Suppl):S513-16
  • Breuer CK, Shin’oka T, Tanel RE, et al. Tissue engineering lamb heart valve leaflets. Biotechnol Bioeng 1996;50(5):562-7
  • Sodian R, Sperling JS, Martin DP, et al. Tissue engineering of a trileaflet heart valve-early in vitro experiences with a combined polymer. Tissue Eng 1999;5(5):489-94
  • Sodian R, Hoerstrup SP, Sperling JS, et al. Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 2000;70(1):140-4
  • Sodian R, Hoerstrup SP, Sperling JS, et al. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 2000;102(Suppl 3):Iii22-9
  • Ghanbari H, Viatge H, Kidane AG, et al. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol 2009;27(6):359-67
  • Weber B, Emmert MY, Behr L, et al. Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation. Biomaterials 2012;33:4031-43
  • Schmidt D, Dijkman PE, Driessen-Mol A, et al. Minimally-invasive implantation of living tissue engineered heart valvesA comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 2010;56(6):510-20
  • Weber B, Scherman J, Emmert MY, et al. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur Heart J 2011;32(22):2830-40
  • Dijkman PE, Driessen-Mol A, de Heer LM, et al. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. J Heart Valve Dis 2012;21(5):670-8
  • Moreira R, Velz T, Alves N, et al. Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng Part C Methods 2012;21(5):670-78
  • Emmert MY, Weber B, Behr L, et al. Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: first experiences in the systemic circulation. JACC Cardiovasc Interv 2011;4(7):822-3
  • Emmert MY, Weber B, Behr L, et al. Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts. Eur J Cardio Thorac Surg Off J Eur Assoc Cardio Thorac Surg 2014;45(1):61-8
  • Emmert MY, Weber B, Falk V, Hoerstrup SP. Transcatheter tissue engineered heart valves. Expert Rev Med Devices 2014;11(1):15-21
  • Lerakis S, Hayek SS, Douglas PS. Paravalvular aortic leak after transcatheter aortic valve replacement current knowledge. Circulation 2013;127(3):397-407
  • Sun B, Long YZ, Zhang HD, et al. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 2014;39:5.862-90
  • Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Mohd Yusof N. A review of: Application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C 2015;48:556-65
  • Courtney T, Sacks MS, Stankus J, et al. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 2006;27(19):3631-8
  • Amoroso NJ, D’Amore A, Hong Y, et al. Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater 2012;8(12):4268-77
  • Fan R, Bayoumi AS, Chen P, et al. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement. J Biomech 2013;46(4):662-9
  • Masoumi N, Larson BL, Annabi N, et al. Electrospun PGS:PCL Microfibers Align Human Valvular Interstitial Cells and Provide Tunable Scaffold Anisotropy. Adv Healthc Mater 2014;3(6):929-39 10.1002/adhm.201300505
  • Sant S, Hwang CM, Lee S-H, Khademhosseini A. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regen Med 2011;5(4):283-91
  • Sant S, Iyer D, Gaharwar AK, et al. Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomater 2013;9(4):5963-73
  • Hinderer S, Seifert J, Votteler M, et al. Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials 2014;35(7):2130-9
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773-85
  • Sodian R, Weber S, Markert M, et al. Stereolithographic Models for Surgical Planning in Congenital Heart Surgery. Ann Thorac Surg 2007;83(5):1854-7
  • Sodian R, Schmauss D, Markert M, et al. Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann Thorac Surg 2008;85(6):2105-8
  • Sodian R, Weber S, Markert M, et al. Pediatric cardiac transplantation: Three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 2008;136(4):1098-9
  • Sodian R, Schmauss D, Schmitz C, et al. 3-Dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg 2009;88(3):974-8
  • Schmauss D, Schmitz C, Bigdeli AK, et al. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg 2012;93(2):e31-3
  • Schmauss D, Gerber N, Sodian R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 2013;145(5):1407-8
  • Sodian R, Loebe M, Hein A, et al. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J Am Soc Artif Intern Organs 2002;48(1):12-16
  • Schaefermeier PK, Szymanski D, Weiss F, et al. Design and fabrication of three-dimensional scaffolds for tissue engineering of human heart valves. Eur Surg Res Eur Chir Forsch Rech Chir Eur 2009;42(1):49-53
  • Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 2013;101(5):1255-64
  • Hockaday LA, Kang KH, Colangelo NW, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012;4(3):035005-16 10.1088/1758-5082/4/3/035005
  • Duan B, Hockaday LA, Kapetanovic E, et al. Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomater 2013;9(8):7640-50
  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 2013;10(5):1836-46 10.1016/j.actbio.2013.12.005
  • Lueders C, Jastram B, Hetzer R, Schwandt H. Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg 2014;46(4):593-601
  • Dijkman PE, Driessen-Mol A, Frese L, et al. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 2012;33(18):4545-54
  • Weber B, Dijkman PE, Scherman J, et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 2013;34(30):7269-80
  • Driessen-Mol A, Emmert MY, Dijkman PE, et al. Transcatheter implantation of homologous “Off-the-Shelf” tissue-engineered heart valves with self-repair capacity: Long-Term Functionality and Rapid In Vivo Remodeling in Sheep. J Am Coll Cardiol 2014;63(13):1320-9
  • Syedain ZH, Meier LA, Reimer JM, Tranquillo RT. Tubular heart valves from decellularized engineered tissue. Ann Biomed Eng 2013;41(12):2645-54
  • Tremblay C, Ruel J, Bourget J-M, et al. A new construction technique for tissue-engineered heart valves using the self-assembly method. Tissue Eng Part C Methods 2014;20(11):905-15 10.1089/ten.TEC.2013.0698
  • Dubé J, Bourget J-M, Gauvin R, et al. Progress in developing a living human tissue-engineered tri-leaflet heart valve assembled from tissue produced by the self-assembly approach. Acta Biomater 2014;10(8):3563-70 10.1016/j.actbio.2014.04.033
  • Tseng H, Puperi DS, Kim EJ, et al. Anisotropic poly(ethylene glycol)/polycaprolactone (PEG/PCL) hydrogel-fiber composites for heart valve tissue engineering. Tissue Eng Part A 2014;20(19-20):2634-45 10.1089/ten.TEA.2013.0397
  • Eslami M, Vrana NE, Zorlutuna P, et al. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. J Biomater Appl 2014;29(3):399-410
  • Masoumi N, Annabi N, Assmann A, et al. Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 2014;35(27):7774-85
  • Daly CD, Campbell GR, Walker PJ, Campbell JH. In vivo engineering of blood vessels. Front Biosci J Virtual Libr 2004;9:1915-24
  • Yamanami M, Yahata Y, Tajikawa T, et al. Preparation of in-vivo tissue-engineered valved conduit with the sinus of Valsalva (type IV biovalve). J Artif Organs Off J Jpn Soc Artif Organs 2010;13(2):106-12
  • Yamanami M, Yahata Y, Uechi M, et al. Development of a completely autologous valved conduit with the sinus of valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation 2010;122(11 Suppl):S100-6
  • Kishimoto S, Takewa Y, Nakayama Y, et al. Sutureless aortic valve replacement using a novel autologous tissue heart valve with stent (stent biovalve): proof of concept. J Artif Organs Off J Jpn Soc Artif Organs 2015. [Epub ahead of print]
  • Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response. Biotechniques 2011;51(4):239-40. 242, 244
  • Mathieu P, Bouchareb R, Boulanger M-C. Innate and adaptive immunity in calcific aortic valve disease. J Immunol Res 2015. Available from: http://www.hindawi.com/journals/jir/2014/851945/abs/ [Accessed 16 January]
  • Simionescu A, Schulte JB, Fercana G, Simionescu DT. Inflammation in cardiovascular tissue engineering: the challenge to a promise: a minireview. Int J Inflamm 2011;2011:958247 10.4061/2011/958247
  • Rippel RA, Ghanbari H, Seifalian AM. Tissue-engineered heart valve: Future of Cardiac Surgery. World J Surg 2012;36(7):1581-91
  • Cicha I, Rüffer A, Cesnjevar R, et al. Early obstruction of decellularized xenogenic valves in pediatric patients: involvement of inflammatory and fibroproliferative processes. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 2011;20(4):222-31
  • Dohmen PM, da Costa F, Yoshi S, et al. Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in-vitro seeding? J Heart Valve Dis 2006;15(6):823-9
  • Sohier J, Carubelli I, Sarathchandra P, et al. The potential of anisotropic matrices as substrate for heart valve engineering. Biomaterials 2014;35(6):1833-44
  • Stella JA, Liao J, Hong Y, et al. Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials 2008;29(22):3228-36
  • Weber M, Heta E, Moreira R, et al. Tissue-engineered fibrin-based heart valve with a tubular Leaflet design. Tissue Eng Part C Methods 2014;20(4):265-75 10.1089/ten.TEC.2013.0258
  • Brizard CP, Brink J, Horton SB, et al. New engineering treatment of bovine pericardium confers outstanding resistance to calcification in mitral and pulmonary implantations in a juvenile sheep model. J Thorac Cardiovasc Surg 2014;148(6):3194-201
  • Tepeköylü C, Lobenwein D, Blunder S, et al. Alteration of inflammatory response by shock wave therapy leads to reduced calcification of decellularized aortic xenografts in mice†. Eur J Cardio Thorac Surg Off J Eur Assoc Cardio Thorac Surg 2015;47(3):e80-90
  • Neethling WML, Glancy R, Hodge AJ. Mitigation of calcification and cytotoxicity of a glutaraldehyde-preserved bovine pericardial matrix: improved biocompatibility after extended implantation in the subcutaneous rat model. J Heart Valve Dis 2010;19(6):778-85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.