1,472
Views
60
CrossRef citations to date
0
Altmetric
Review

Using glyco-engineering to produce therapeutic proteins

(PhD candidate) & (Associate Professor, Group Leader)

Bibliography

  • Aebi M. N-linked protein glycosylation in the ER. Biochim Biophys Acta 2013;1833:2430-7
  • Zielinska DF, Gnad F, Schropp K, et al. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 2012;46:542-8
  • Shrimal S, Gilmore R. Glycosylation of closely spaced acceptor sites in human glycoproteins. J Cell Sci 2013;126:5513-23
  • Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 2015;41:71-8
  • Shrimal S, Gilmore R. Reduced expression of the oligosaccharyltransferase exacerbates protein hypoglycosylation in cells lacking the fully assembled oligosaccharide donor. Glycobiology 2015;25(7):774-83
  • Choi BK, Warburton S, Lin H, et al. Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 2012;95:671-82
  • Elliott S, Lorenzini T, Asher S, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 2003;21:414-21
  • Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 2001;84:3-10
  • Song R, Oren DA, Franco D, et al. Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity. Nat Biotechnol 2013;31:1047-52
  • Nairn AV, York WS, Harris K, et al. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem 2008;283:17298-313
  • North SJ, Huang HH, Sundaram S, et al. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 2010;285:5759-75
  • Bennun SV, Yarema KJ, Betenbaugh MJ, et al. Integration of the transcriptome and glycome for identification of glycan cell signatures. PLoS Comput Biol 2013;9:e1002813
  • Spahn PN, Lewis NE. Systems glycobiology for glycoengineering. Curr Opin Biotechnol 2014;30:218-24
  • Jedrzejewski PM, del Val IJ, Constantinou A, et al. Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation. Int J Mol Sci 2014;15:4492-522
  • Hossler P, Mulukutla BC, Hu WS. Systems analysis of N-glycan processing in mammalian cells. PLoS ONE 2007;2:e713
  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012;13:448-62
  • Umaña P, Jean-Mairet J, Moudry R, et al. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 1999;17:176-80
  • Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014;370:1101-10
  • Zhang M, Koskie K, Ross JS, et al. Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 2010;105:1094-105
  • Hamilton SR, Davidson RC, Sethuraman N, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 2006;313:1441-3
  • Strasser R, Altmann F, Steinkellner H. Controlled glycosylation of plant-produced recombinant proteins. Curr Opin Biotechnol 2014;30C:95-100
  • Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 1989;9:377-83
  • Wright A, Sato Y, Okada T, et al. In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 2000;10:1347-55
  • Yoo EM, Yu LJ, Wims LA, et al. Differences in N-glycan structures found on recombinant IgA1 and IgA2 produced in murine myeloma and CHO cell lines. MAbs 2010;2:320-34
  • Patterson G, Hirschberg K, Polishchuk R, et al. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 2008;133:1055-67
  • Beznoussenko GV, Parashuraman S, Rizzo R, et al. Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. Elife 2014;3:10.7554/eLife.02009
  • Nabi IR, Dennis JW. The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology 1998;8:947-53
  • Glick BS, Luini A. Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol 2011;3:a005215
  • Lavieu G, Dunlop MH, Lerich A, et al. The Golgi ribbon structure facilitates anterograde transport of large cargoes. Mol Biol Cell 2014;25:3028-36
  • D’Angelo G, Uemura T, Chuang CC, et al. Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature 2013;501:116-20
  • Thaysen-Andersen M, Packer NH. Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology 2012;22:1440-52
  • Wormald MR, Dwek RA. Glycoproteins: glycan presentation and protein-fold stability. Structure 1999;7:R155-60
  • Stadlmann J, Pabst M, Kolarich D, et al. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 2008;8:2858-71
  • Ayoub D, Jabs W, Resemann A, et al. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. MAbs 2013;5:699-710
  • Steentoft C, Bennett EP, Schjoldager KT, et al. Precision genome editing: a small revolution for glycobiology. Glycobiology 2014;24:663-80
  • Ghaderi D, Taylor RE, Padler-Karavani V, et al. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 2010;28:863-7
  • Kannicht C, Ramström M, Kohla G, et al. Characterisation of the post-translational modifications of a novel, human cell line-derived recombinant human factor VIII. Thromb Res 2013;131:78-88
  • Shahrokh Z, Royle L, Saldova R, et al. Erythropoietin produced in a human cell line (Dynepo) has significant differences in glycosylation compared with erythropoietins produced in CHO cell lines. Mol Pharm 2011;8:286-96
  • Ghaderi D, Zhang M, Hurtado-Ziola N, et al. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 2012;28:147-75
  • Bosques CJ, Collins BE, Meador JW, et al. Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins. Nat Biotechnol 2010;28:1153-6
  • Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 2008;358:1109-17
  • Reeves PJ, Callewaert N, Contreras R, et al. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA 2002;99:13419-24
  • Beck A, Reichert JM. Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 2012;4:419-25
  • Croset A, Delafosse L, Gaudry JP, et al. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 2012;161:336-48
  • Chiba Y, Suzuki M, Yoshida S, et al. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 1998;273:26298-304
  • Hamilton SR, Bobrowicz P, Bobrowicz B, et al. Production of complex human glycoproteins in yeast. Science 2003;301:1244-6
  • Jacobs PP, Geysens S, Vervecken W, et al. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 2009;4:58-70
  • Parsaie Nasab F, Aebi M, Bernhard G, et al. A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl Environ Microbiol 2013;79:997-1007
  • De Pourcq K, Tiels P, Van Hecke A, et al. Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One 2012;7:e39976
  • Wang H, Song HL, Wang Q, et al. Expression of glycoproteins bearing complex human-like glycans with galactose terminal in Hansenula polymorpha. World J Microbiol Biotechnol 2013;29:447-58
  • Altmann F, Schwihla H, Staudacher E, et al. Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem 1995;270:17344-9
  • Shi X, Jarvis DL. Protein N-glycosylation in the baculovirus-insect cell system. Curr Drug Targets 2007;8:1116-25
  • Palmberger D, Wilson IB, Berger I, et al. SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS One 2012;7:e34226
  • Mabashi-Asazuma H, Kuo CW, Khoo KH, et al. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 2014;24:325-40
  • Altmann F. The role of protein glycosylation in allergy. Int Arch Allergy Immunol 2007;142:99-115
  • Cox K, Sterling J, Regan J, et al. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 2006;24:1591-7
  • Schähs M, Strasser R, Stadlmann J, et al. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 2007;5:657-63
  • Strasser R, Stadlmann J, Schähs M, et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 2008;6:392-402
  • Koprivova A, Stemmer C, Altmann F, et al. Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2004;2:517-23
  • Loos A, Gruber C, Altmann F, et al. Expression and glycoengineering of functionally active heteromultimeric IgM in plants. Proc Natl Acad Sci USA 2014;111:6263-8
  • Qiu X, Wong G, Audet J, et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014;514:47-53
  • Castilho A, Windwarder M, Gattinger P, et al. Proteolytic and N-Glycan Processing of Human α1-Antitrypsin Expressed in Nicotiana benthamiana. Plant Physiol 2014;166:1839-51
  • Tekoah Y, Tzaban S, Kizhner T, et al. Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep 2013;33:10.1042/BSR20130081
  • Mabashi-Asazuma H, Shi X, Geisler C, et al. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells. Glycobiology 2013;23:199-210
  • Castilho A, Neumann L, Gattinger P, et al. Generation of biologically active multi-sialylated recombinant human EPOFc in plants. PLoS One 2013;8:e54836
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006;313:670-3
  • Raju TS, Lang SE. Diversity in structure and functions of antibody sialylation in the Fc. Curr Opin Biotechnol 2014;30:147-52
  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 2004;87:614-22
  • Lau KS, Partridge EA, Grigorian A, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007;129:123-34
  • Baker JL, Çelik E, DeLisa MP. Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol 2013;31:313-23
  • Valderrama-Rincon JD, Fisher AC, Merritt JH, et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 2012;8:434-6
  • Ollis AA, Zhang S, Fisher AC, et al. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat Chem Biol 2014;10:816-22
  • Wang LX, Amin MN. Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem Biol 2014;21:51-66
  • Wang P, Dong S, Shieh JH, et al. Erythropoietin derived by chemical synthesis. Science 2013;342:1357-60
  • Washburn N, Schwab I, Ortiz D, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci USA 2015;112:E1297-306
  • Zimran A, Elstein D, Levy-Lahad E, et al. Replacement therapy with imiglucerase for type 1 Gaucher’s disease. Lancet 1995;345:1479-80
  • Huang W, Giddens J, Fan SQ, et al. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 2012;134:12308-18
  • Ahmed AA, Giddens J, Pincetic A, et al. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J Mol Biol 2014;426:3166-79
  • Meuris L, Santens F, Elson G, et al. GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nat Biotechnol 2014;32:485-9
  • Bennett EP, Mandel U, Clausen H, et al. Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012;22:736-56
  • Bakema JE, van Egmond M. Immunoglobulin A: A next generation of therapeutic antibodies? MAbs 2011;3:352-61
  • Taschwer M, Hackl M, Hernández Bort JA, et al. Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth. J Biotechnol 2012;157:295-303
  • Gaunitz S, Jin C, Nilsson A, et al. Mucin-type proteins produced in the Trichoplusia ni and Spodoptera frugiperda insect cell lines carry novel O-glycans with phosphocholine and sulfate substitutions. Glycobiology 2013;23:778-96
  • Gong B, Burnina I, Stadheim TA, et al. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry. J Mass Spectrom 2013;48:1308-17
  • Parsons J, Altmann F, Graf M, et al. A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Sci Rep 2013;3:3019
  • Karnoup AS, Turkelson V, Anderson WH. O-linked glycosylation in maize-expressed human IgA1. Glycobiology 2005;15:965-81
  • Kong Y, Joshi HJ, Schjoldager KT, et al. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology 2015;25:55-65
  • Lindberg L, Liu J, Gaunitz S, et al. Mucin-type fusion proteins with blood group A or B determinants on defined O-glycan core chains produced in glycoengineered Chinese hamster ovary cells and their use as immunoaffinity matrices. Glycobiology 2013;23:720-35
  • Liu J, Jin C, Cherian RM, et al. O-glycan repertoires on a mucin-type reporter protein expressed in CHO cell pools transiently transfected with O-glycan core enzyme cDNAs. J Biotechnol 2015;199:77-89
  • Amano K, Chiba Y, Kasahara Y, et al. Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci USA 2008;105:3232-7
  • Castilho A, Neumann L, Daskalova S, et al. Engineering of Sialylated Mucin-type O-Glycosylation in Plants. J Biol Chem 2012;287:36518-26
  • Yang Z, Drew DP, Jørgensen B, et al. Engineering mammalian mucin-type O-glycosylation in plants. J Biol Chem 2012;287:11911-23
  • Hamilton SR, Cook WJ, Gomathinayagam S, et al. Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 2013;23:1192-203
  • Hopkins D, Gomathinayagam S, Hamilton SR. A practical approach for O-linked mannose removal: the use of recombinant lysosomal mannosidase. Appl Microbiol Biotechnol 2015;99:3913-27
  • Henderson GE, Isett KD, Gerngross TU. Site-specific modification of recombinant proteins: a novel platform for modifying glycoproteins expressed in E. coli. Bioconjug Chem 2011;22:903-12
  • Stennicke HR, Kjalke M, Karpf DM, et al. A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood 2013;121:2108-16
  • Ferrara C, Grau S, Jäger C, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci USA 2011;108:12669-74
  • Golay J, Da Roit F, Bologna L, et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 2013;122:3482-9
  • Forthal DN, Gach JS, Landucci G, et al. Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. J Immunol 2010;185:6876-82
  • Zeitlin L, Pettitt J, Scully C, et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci 2011;108:20690-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.