289
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Prolyl hydroxylase inhibitors act as agents to enhance the efficiency of cell therapy

, , , , &

Bibliography

  • Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med 2008;3:1-5
  • Badiavas EV, Abedi M, Butmarc J, et al. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003;196:245-50
  • Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med 2011;9(1):52
  • Lunn JS, Sakowski SA, Hur J, Feldman EL. Stem cell technology for neurodegenerative diseases. Ann Neurol 2011;70(3):353-61
  • Volarevic V, Bojic S, Nurkovic J, et al. Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. BioMed Res Int 2014;2014:507234
  • Dittmar T, Zänker KS. Role of cancer stem cells in cancer biology and therapy. CRC Press. Taylor & Francis Group; 2013
  • Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 2008;9(1):11-21
  • Scadden DT. The stem-cell niche as an entity of action. Nature 2006;441(7097):1075-9
  • Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007;129(3):465-72
  • Haque N, Rahman MT, Abu Kasim NH, Alabsi AM. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013;2013:632972
  • Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 2009;220:562-8
  • Estrada JC, Albo C, Benguría A, et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 2012;19:743-55
  • Fehrer C, Brunauer R, Laschober G, et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 2007;6:745-57
  • Jin Y, Kato T, Furu M, et al. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase. Biochem Biophys Res Commun 2010;391:1471-6
  • Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell 2010;7:150-61
  • Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 2001;22:201-7
  • Yu Q, Liu L, Lin J, et al. SDF-1alpha/CXCR4 axis mediates the migration of mesenchymal stem cells to the hypoxic-ischemic brain lesion in a rat model. Cell J 2015;16:440-7
  • Kang SK, Shin IS, Ko MS, et al. Journey of mesenchymal stem cells for homing: Strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012;2012
  • Liu H, Liu S, Li Y, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One 2012;7:e34608
  • Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008;26:2173-82
  • Gao Q, Guo M, Zeng W, et al. Matrix metalloproteinase 9 secreted by hypoxia cardiac fibroblasts triggers cardiac stem cell migration in vitro. Stem Cells Int 2015;2015:836390
  • Stamati K, Mudera V, Cheema U. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng 2011;2(1):2041731411432365
  • Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 2007;12(19):853-9
  • Zhu L-L, Wu L-Y, Yew DT, Fan M. Effects of hypoxia on the proliferation and differentiation of NSCs. Mol Neurobiol 2005;31(1-3):231-42
  • Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70(5):1469-80
  • Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005;105(2):659-69
  • Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992;12(12):5447-54
  • Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995;270(3):1230-7
  • Weidemann A, Johnson R. Biology of HIF-1alpha. Cell Death Differ 2008;15(4):621-7
  • Nagy M. HIF-1 is the commander of gateways to cancer. J Cancer Sci Ther 2010
  • Xia Y, Choi H-K, Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 2012;49:24-40
  • Fujita N, Markova D, Anderson DG, et al. Expression of prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc distinct roles of PHD2 and PHD3 proteins in controlling HIF-1alpha activity in hypoxia. J Biol Chem 2012;287(20):16975-86
  • Menrad H, Werno C, Schmid T, et al. Roles of hypoxia-inducible factor-1alpha (HIF-1alpha) versus HIF-2alpha in the survival of hepatocellular tumor spheroids. Hepatology 2010;51(6):2183-92
  • Lappin T. Dual control: the HIF-2 regulator. Blood 2010;116(16):2870-1
  • Bao W, Qin P, Needle S, et al. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J Cardiovasc Pharmacol 2010;56(2):147-55
  • Kant R, Bali A, Singh N, Jaggi AS. Prolyl 4 hydroxylase: a critical target in the pathophysiology of diseases. Korean J Physiol Pharmacol 2013;17(2):111-20
  • Karuppagounder SS, Ratan RR. Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics? J Cereb Blood Flow Metab 2012;32(7):1347-61
  • Acevedo JM, Centanin L, Dekanty A, Wappner P. Oxygen sensing in Drosophila: multiple isoforms of the prolyl hydroxylase fatiga have different capacity to regulate HIFalpha/Sima. PLoS One 2010;5(8):e12390
  • Jaakkola P, Mole DR, Tian Y-M, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292(5516):468-72
  • Siddiq A, Aminova LR, Ratan RR. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem Res 2007;32(4-5):931-46
  • Steinhoff A, Pientka FK, Möckel S, et al. Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochem Biophys Res Commun 2009;387(4):705-11
  • Tian Y, Mole D, Ratcliffe P, Gleadle J. Characterization of different isoforms of the HIF prolyl hydroxylase PHD1 generated by alternative initiation. Biochem J 2006;397:179-86
  • Metzen E, Berchner-Pfannschmidt U, Stengel P, et al. Intracellular localisation of human HIF-1α hydroxylases: implications for oxygen sensing. J Cell Sci 2003;116(7):1319-26
  • Lieb ME, Menzies K, Moschella MC, et al. Mammalian EGLN genes have distinct patterns of mRNA expression and regulation. Biochem Cell Biol 2002;80(4):421-6
  • Place TL, Domann FE. Prolyl-hydroxylase 3: evolving roles for an ancient signaling protein. Hypoxia 2013;2013(1):13-17
  • Xie L, Pi X, Mishra A, et al. PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response. J Clin Invest 2012;122(8):2827-36
  • Smirnova N, Hushpulian D, Speer R, et al. Catalytic mechanism and substrate specificity of HIF prolyl hydroxylases. Biochem (Moscow) 2012;77(10):1108-19
  • Moser SC, Bensaddek D, Ortmann B, et al. PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192. Dev Cell 2013;26(4):381-92
  • Fong G, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 2008;15(4):635-41
  • Fan L, Li J, Yu Z, et al. The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. BioMed Res Int 2014;2014
  • Siddiq A, Aminova LR, Ratan RR. Prolyl 4-hydroxylase activity-responsive transcription factors: from hydroxylation to gene expression and neuroprotection. Front Biosci 2008;13:2875-87
  • Guo M, Song L-P, Jiang Y, et al. Hypoxia-mimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1alpha independent mechanisms. Apoptosis 2006;11(1):67-77
  • Hien LS. Induction of Angiogenesis in Microfluidics by using Prolyl Hydroxylase Inhibitor and Sphingosine I-Phosphate. 2013
  • Miyata T, Takizawa S, de Strihou CVY. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets. Am J Physiol Cell Physiol 2011;300(2):C226-C31
  • Kontani S, Nagata E, Uesugi T, et al. A novel prolyl hydroxylase inhibitor protects against cell death after hypoxia. Neurochem Res 2013;38(12):2588-94
  • Jokilehto T, Jaakkola PM. The role of HIF prolyl hydroxylases in tumour growth. J Cell Mol Med 2010;14(4):758-70
  • Warnecke C, Griethe W, Weidemann A, et al. Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J 2003;17(9):1186-8
  • Sefcik LS, Petrie Aronin CE, Botchwey EA. Engineering vascularized tissues using natural and synthetic small molecules. Organogenesis 2008;4(4):215-27
  • Fraisl P, Aragonés J, Carmeliet P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 2009;8(2):139-52
  • Warshakoon NC, Wu S, Boyer A, et al. Design and synthesis of a series of novel pyrazolopyridines as HIF 1-alpha prolyl hydroxylase inhibitors. Bioorg Med Chem Lett 2006;16(21):5687-90
  • Natarajan R, Salloum FN, Fisher BJ, Kukreja RC. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res 2006;98(1):133-40
  • Myllyharju J. Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiologica 2013;208(2):148-65
  • Grigioni F, Detaint D, Avierinos J-F, et al. Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J Am Coll Cardiol 2005;45(2):260-7
  • Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000;287(5457):1442-6
  • Shi R-Z, Li Q-P. Improving outcome of transplanted mesenchymal stem cells for ischemic heart disease. Biochem Biophys Res Commun 2008;376(2):247-50
  • Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004;287(6):H2670-H6
  • Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 2005;46(7):1339-50
  • Srijaya TC, Ramasamy TS, Kasim NHA. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J Transl Med 2014;12(1):243
  • Liu XB, Wang JA, Ogle ME, Wei L. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. J Cell Biochem 2009;106(5):903-11
  • Liu X, Wang J-A, Ji X-Y, et al. Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res Ther 2014;5(5):111
  • Dai Y, Xu M, Wang Y, et al. HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. J Mol Cell Cardiol 2007;42(6):1036-44
  • Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004;95(9):911-21
  • Chimenti I, Gaetani R, Barile L, et al. Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol 2012;327-38
  • Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007;115(7):896-908
  • Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 2012;379(9819):895-904
  • Hsiao L-C, Carr C, Chang K-C, et al. Stem cell-based therapy for ischemic heart disease. Cell Transplant 2013;22(4):663-75
  • Tan SC, Gomes R, Yeoh KK, et al. Preconditioning of cardiosphere-derived cells with hypoxia or prolyl-4-hydroxylase inhibitors increases stemness and decreases reliance on oxidative metabolism. Cell Transplant 2015. [Epub ahead of print]
  • Tan S CC, Yeoh K. Abstract P027: preconditioning cardiosphere-derived cells by hypoxia and prolyl hydroxylase inhibitors to induce hif-related metabolic changes and C-kit expression. Circ Res 2011;109:AP027
  • Wang WE, Yang D, Li L, et al. Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium. Circ Res 2013;113(3):288-300
  • Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 2011;71(7):2550-60
  • Hynes B, Kumar AH, O’Sullivan J, et al. Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur Heart J 2013;34(10):782-9
  • Mehrhof FB, Müller F-U, Bergmann MW, et al. In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 2001;104(17):2088-94
  • Padin-Iruegas ME, Misao Y, Davis ME, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 2009;120(10):876-87
  • Huang M, Nguyen P, Jia F, et al. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation 2011;124(11 suppl 1):S46-54
  • Kurozumi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005;11(1):96-104
  • Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001;32(4):1005-11
  • Pacary E, Legros H, Valable S, et al. Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 2006;119(13):2667-78
  • Jeon ES, Shin JH, Hwang SJ, et al. Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a. Biochem Biophys Res Commun 2014;444(4):581-7
  • Cheng L-C, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009;12(4):399-408
  • Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007;27(5):1859-67
  • Bito H, Furuyashiki T, Ishihara H, et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 2000;26(2):431-41
  • Luo L. Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000;1(3):173-80
  • Goda N, Ryan HE, Khadivi B, et al. Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol Cell Biol 2003;23(1):359-69
  • Milosevic J, Adler I, Manaenko A, et al. Non-hypoxic stabilization of hypoxia-inducible factor alpha (HIF-alpha): Relevance in neural progenitor/stem cells. Neurotox Res 2009;15(4):367-80
  • Chu K, Jung K-H, Kim S-J, et al. Transplantation of human neural stem cells protect against ischemia in a preventive mode via hypoxia-inducible factor-1alpha stabilization in the host brain. Brain Res 2008;1207:182-92
  • Robin AM, Zhang ZG, Wang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 2006;26(1):125-34
  • Luo Y, Cai J, Xue H, et al. Functional SDF1alpha/CXCR4 signaling in the developing spinal cord. J Neurochem 2005;93(2):452-62
  • Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci 2002;99(18):11946-50
  • Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 2004;279(41):42351-4
  • Nanji SA, Shapiro A. Advances in pancreatic islet transplantation in humans. Diabetes Obes Metab 2006;8(1):15-25
  • Urban VS, Kiss J, Kovacs J, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 2008;26(1):244-53
  • Najafi R, Sharifi AM. Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opin Biol Ther 2013;13(7):959-72
  • Van Linthout S, Stamm C, Schultheiss H-P, Tschöpe C. Mesenchymal stem cells and inflammatory cardiomyopathy: cardiac homing and beyond. Cardiol Res Pract 2011;2011:757154
  • Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002;30(9):973-81
  • Langlois A, Bietiger W, Mandes K, et al. Overexpression of vascular endothelial growth factor in vitro using deferoxamine: a new drug to increase islet vascularization during transplantation. Transplant Proc 2008;40(2):473-6
  • Vaithilingam V, Oberholzer J, Guillemin G, Tuch B. Beneficial effects of desferrioxamine on encapsulated human islets – in vitro and in vivo study. Am J Transplant 2010;10(9):1961-9
  • Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vas Surg 2010;51(1):230-41
  • Ebrahimian TG, Heymes C, You D, et al. NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am J Pathol 2006;169(2):719-28
  • HoWangYin K-Y, Loinard C, Bakker W, et al. HIF-prolyl hydroxylase 2 inhibition enhances the efficiency of mesenchymal stem cell-based therapies for the treatment of critical limb ischemia. Stem Cells 2014;32(1):231-43
  • Li H, Zuo S, He Z, et al. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol Heart Circ Physiol 2010;299(6):H1772-H81
  • Deuse T, Peter C, Fedak PW, et al. Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell–based myocardial salvage after acute myocardial infarction. Circulation 2009;120(11 suppl 1):S247-S54
  • Sasso FC, Torella D, Carbonara O, et al. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J Am Coll Cardiol 2005;46(5):827-34
  • Rey S, Lee K, Wang CJ, et al. Synergistic effect of HIF-1alpha gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc Natl Acad Sci 2009;106(48):20399-404
  • Bauer TW, Muschler GF. Bone graft materials: an overview of the basic science. Clin Orthop Relat Res 2000;371:10-27
  • Mariner PD, Wudel JM, Miller DE, et al. Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical-sized calvaria bone defects in rats. J Orthop Res 2013;31(3):401-6
  • Jo S, Kim S, Cho TH, et al. Effects of recombinant human bone morphogenic protein-2 and human bone marrow-derived stromal cells on in vivo bone regeneration of chitosan–poly (ethylene oxide) hydrogel. J Biomed Mater Res A 2013;101(3):892-901
  • Zhang W, Li G, Deng R, et al. New bone formation in a true bone ceramic scaffold loaded with desferrioxamine in the treatment of segmental bone defect: a preliminary study. J Orthop Sci 2012;17(3):289-98
  • Dudas JR, Marra KG, Cooper GM, et al. The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects. Ann Plast Surg 2006;56(5):543-8
  • Cowan CM, Shi Y-Y, Aalami OO, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004;22(5):560-7
  • Riddle RC, Khatri R, Schipani E, Clemens TL. Role of hypoxia-inducible factor-1alpha in angiogenic–osteogenic coupling. J Mol Med 2009;87(6):583-90
  • Wu C, Zhou Y, Chang J, Xiao Y. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater 2013;9(11):9159-68
  • Wagegg M, Gaber T, Lohanatha FL, et al. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS One 2012;7(9):e46483
  • Ding H, Chen S, Song W-Q, et al. Dimethyloxaloylglycine improves angiogenic activity of bone marrow stromal cells in the tissue-engineered bone. Int J Biol Sci 2014;10(7):746-56
  • Ding H, Gao Y-S, Wang Y, et al. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev 2013;23(9):990-1000
  • Wan C, Gilbert SR, Wang Y, et al. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci 2008;105(2):686-91
  • Shen X, Wan C, Ramaswamy G, et al. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res 2009;27(10):1298-305
  • Stewart R, Goldstein J, Eberhardt A, et al. Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma 2011;25(8):472-6
  • Qu Z-H, Zhang X-L, Tang T-T, Dai K-R. Promotion of osteogenesis through beta-catenin signaling by desferrioxamine. Biochem Biophys Res Commun 2008;370(2):332-7
  • Genetos DC, Toupadakis CA, Raheja LF, et al. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 2010;110(2):457-67
  • Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005;8(5):739-50
  • Du J, Liu L, Lay F, et al. Combination of HIF-1alpha gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice. Gene Ther 2013;20(11):1070-6
  • Zhang X, Sarkar K, Rey S, et al. Aging impairs the mobilization and homing of bone marrow-derived angiogenic cells to burn wounds. J Mol Med 2011;89(10):985-95
  • Zhang X, Yan X, Cheng L, et al. Wound healing improvement with PHD-2 silenced fibroblasts in diabetic mice. PLoS One 2013;8(12):e84548
  • Takaku M, Tomita S, Kurobe H, et al. Systemic preconditioning by a prolyl hydroxylase inhibitor promotes prevention of skin flap necrosis via HIF-1-induced bone marrow-derived cells. PLoS One 2012;7(8):42964
  • Seo B-M, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004;364(9429):149-55
  • Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 2000;97(25):13625-30
  • Murakami Y, Kojima T, Nagasawa T, et al. Novel isolation of alkaline phosphatase-positive subpopulation from periodontal ligament fibroblasts. J Periodontol 2003;74(6):780-6
  • Isaka J, Ohazama A, Kobayashi M, et al. Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol 2001;72(3):314-23
  • Osathanon T, Vivatbutsiri P, Sukarawan W, et al. Cobalt chloride supplementation induces stem-cell marker expression and inhibits osteoblastic differentiation in human periodontal ligament cells. Archives Oral Biol 2015;60(1):29-36
  • Müller H-D, Cvikl B, Gruber R, et al. Prolyl hydroxylase inhibitors increase the production of vascular endothelial growth factor in dental pulp–derived cells. J Endod 2012;38(11):1498-503
  • Liu W, Xu J, Wang M, et al. Tumor-derived vascular endothelial growth factor (VEGF)-a facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway. Int J Oncol 2011;39(5):1213-20
  • Kimbro K, Simons J. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr-Relat Cancer 2006;13(3):739-49
  • Cheng Z-X, Wang D-W, Liu T, et al. Effects of the HIF-1alpha and NF-kappaB loop on epithelial-mesenchymal transition and chemoresistance induced by hypoxia in pancreatic cancer cells. Oncol Rep 2014;31(4):1891-8
  • Huang L, Ao Q, Zhang Q, et al. Hypoxia induced paclitaxel resistance in human ovarian cancers via hypoxia-inducible factor 1alpha. J Cancer Res Clin Oncol 2010;136(3):447-56
  • Bonios M, Chang CY, Terrovitis J, et al. Constitutive HIF-1alpha expression blunts the beneficial effects of cardiosphere-derived cell therapy in the heart by altering paracrine factor balance. J Cardiovasc Transl Res 2011;4(3):363-72
  • Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332(6163):411-15
  • Hocher B, George I, Rebstock J, et al. Endothelin system–dependent cardiac remodeling in renovascular hypertension. Hypertension 1999;33(3):816-22
  • Rebsamen M, Church D, Morabito D, et al. Role of cAMP and calcium influx in endothelin-1-induced ANP release in rat cardiomyocytes. Am J Physiol 1997;273(5):E922-E31
  • Loboda A, Jozkowicz A, Dulak J. HIF-1 versus HIF-2—Is one more important than the other? Vascul Pharmacol 2012;56(5):245-51
  • Holmquist-Mengelbier L, Fredlund E, Löfstedt T, et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 2006;10(5):413-23
  • Scrideli CA, Carlotti Jr CG, Mata JF, et al. Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas. J Neuro-Oncol 2007;83(3):233-9
  • Bordji K, Grandval A, Cuhna-Alves L, et al. Hypoxia-inducible factor-2alpha (HIF-2alpha), but not HIF-1alpha, is essential for hypoxic induction of class III beta-tubulin expression in human glioblastoma cells. FEBS J 2014;281(23):5220-36
  • Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci 2012;37(9):364-72
  • Zhang T, Niu X, Liao L, et al. The contributions of HIF-target genes to tumor growth in RCC. PLoS One 2013;8(11):e80544
  • Carroll VA, Ashcroft M. Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2beta in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 2006;66(12):6264-70
  • Qing G, Simon MC. Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev 2009;19(1):60-6
  • Zhao J, Du F, Luo Y, et al. The emerging role of hypoxia-inducible factor-2 involved in chemo/radioresistance in solid tumors. Cancer Treat Rev 2015;41(7):623-33
  • Xiang L, Liu Z-H, Huan Q, et al. Hypoxia-inducible factor-2a is associated with ABCG2 expression, histology-grade and Ki67 expression in breast invasive ductal carcinoma. Diagn Pathol 2012;7:32
  • Ginouves A, Ilc K, Macías N, et al. PHDs overactivation during chronic hypoxia “desensitizes” HIFalpha and protects cells from necrosis. Proc Natl Acad Sci 2008;105(12):4745-50
  • Yu J, Yin S, Zhang W, et al. Hypoxia preconditioned bone marrow mesenchymal stem cells promoted liver regeneration in a rat massive hepatectomy model. Stem Cell Res Ther 2013;4(4):83
  • Yan F, Yao Y, Chen L, et al. Hypoxic preconditioning improves survival of cardiac progenitor cells: Role of stromal cell derived factor-1alpha–CXCR4 axis. PLoS One 2012;7(7):e37948
  • Zhang W, Liu L, Huo Y, et al. Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. BioMed Res Int 2014;2014:462472
  • Sun B, Guo S, Xu F, et al. Concentrated hypoxia-preconditioned adipose mesenchymal stem cell-conditioned medium improves wounds healing in full-thickness skin defect model. Int Scholarly Res Notices 2014;2014
  • Jun EK, Zhang Q, Yoon BS, et al. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-beta/SMAD2 and PI3K/Akt pathways. Int J Mol Sci 2014;15(1):605-28
  • Chang C-P, Chio C-C, Cheong C-U, et al. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci 2013;124(3):165-76
  • Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109(10):1292-8
  • Liu J, Wang Y, Du W, Yu B. Sca-1-positive cardiac stem cell migration in a cardiac infarction model. Inflammation 2013;36(3):738-49
  • Ghaffaripour HA, Jalali M, Nikravesh MR, et al. Neuronal cell reconstruction with umbilical cord blood cells in the brain hypoxia-ischemia. Iran Biomed J 2015;19(1):29-34
  • Jian K, Shi Y, Zhang Y, et al. Time course effect of hypoxia on bone marrow-derived endothelial progenitor cells and their effects on left ventricular function after transplanted into acute myocardial ischemia rat. Eur Rev Med Pharmacol Sci 2015;19(6):1043-54
  • Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008;26(8):2173-82
  • Beegle J, Lakatos K, Kalomoiris S, et al. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 2015;33(6):1818-28
  • Sun J, Wei ZZ, Gu X, et al. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 2015. [ Epub ahead of print]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.