595
Views
8
CrossRef citations to date
0
Altmetric
Review

Gene therapy for HIV infection

, , &

Bibliography

  • Kitahata M, Gange S, Abraham A, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 2009;360:1815-26
  • Panel in antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. DHHS. 2014. Available from: http://aidsinfo.nih.gov; updated 1 May 2014
  • Fernández-Montero JV, Vispo E, Soriano V. Emerging antiretroviral drugs. Expert Opin Pharmacother 2014;15:211-19
  • Kaufmann G, Zaunders J, Cunningham P, et al. Rapid restoration of CD4 T cell subsets in subjects receiving antiretroviral therapy during primary HIV infection. AIDS 2000;14:2643-51
  • Maartens G, Boulle A, Mocroft A, et al. Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: an observational cohort study. Lancet 2007;370:407-13
  • Lewden C, Chene G, Morlat P, et al. HIV-infected adults with a CD4 cell count greater than 500 cells/mm3 on long-term combination antiretroviral therapy reach same mortality rates as general population. J Acquir Immune Defic Syndr 2007;46:72-7
  • Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 2008;372:293-9
  • Deeks S, Lewin S, Havlir D. The end of AIDS: HIV infection as a chronic disease. Lancet 2013;382:1525-33
  • Blanco F, San Román J, Vispo E, et al. Management of metabolic complications and cardiovascular risk in HIV-infected patients. AIDS Rev 2010;12:231-41
  • Soriano V, Barreiro P, Sherman K. The changing epidemiology of liver disease in HIV patients. AIDS Rev 2013;15:25-31
  • Smith C, Ryom L, Weber R, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): a multicenter cohort collaboration. Lancet 2014;384:241-8
  • WHO report in partnership with UNICEF and UNAIDS. Global update on HIV treatment 2013: results, impact and opportunities. 2014. Available from: www.who.int
  • Passaes C, Sáez-Cirón A. HIV cure research: advances and prospects. Virology 2014;454:340-52
  • Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360:692-8
  • Allers K, Hutter G, Hofmann J, et al. Evidence for the cure of HIV infection by CCR5 Delta32/Delta 32 stem cell transplantation. Blood 2010;8:8
  • The International AIDS Society Working Group on HIV Cure. Deeks SG, Autran B, Berkhout B. Towards and HIV cure: a global scientific strategy. Nat Rev Immunol 2012;12:607-14
  • Barreiro P, Fernández-Montero JV, de Mendoza C, et al. Towards hepatitis C eradication from the HIV-infected population. Antiviral Res 2014;105:1-7
  • Autran B, Descours B, Avettand-Fenoel V, Rouzioux C. Elite controllers as a model of functional cure. Curr Opin HIV AIDS 2011;6:181-7
  • Baltimore D. Intracellular immunization. Nature 1988;335:395-6
  • Samson M, Libert F, Dorans B, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature 1996;382:722-5
  • Hoxie J, June C. Novel cell and gene therapies for HIV. Cold Spring Harb Perpect Med 2012;2:a007179
  • Kitchen S, Shimizu S, Sung An D. Stem cell-based anti-HIV gene therapy. Virology 2011;411:260-72
  • Didigu C, Doms R. Gene therapy targeting HIV entry. Viruses 2014;6:1395-409
  • Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996;85:1135-48
  • Deng H, Liu R, Ellmeier W, et al. Identification of major co-receptor for primary isolates of HIV-1. Nature 1996;381:661-6
  • Doranz B, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusion and the beta-chemokine receptors CKR-5, CKR-3 and CKR-2b as fusion cofactors. Cell 1996;85:1149-58
  • Furuta R, Wild C, Weng Y, et al. Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 1998;5:276-9
  • Markosyan R, Cohen F, Melikyan G. HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. Mol Biol Cell 2003;14:926-38
  • Kuritzkes D, Jacobson J, Powderly W, et al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 2004;189:286-91
  • Jacobson JM, Kuritzkes DR, Godofsky E, et al. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in HIV type 1-infected adults. Antimicrob Agents Chemother 2009;53:450-7
  • Moore J, Sattentau Q, Klasse P, Burkly L. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of HIV type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 1992;66:4784-93
  • Burkly L, Olson D, Shapiro R, et al. Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. Dissecting the basis for its inhibitory effect on HIV-induced cell fusion. J Immunol 1992;149:1779-87
  • Song R, Franco D, Kao C, et al. Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients. J Virol 2010;84:6935-42
  • Yang O, Tran A, Kalams S, et al. Lysis of HIV-1 infected cells and inhibition of viral replication by universal receptor T cells. Proc Natl Acad Sci USA 1997;94:11478-83
  • Mitsuyasu R, Anton P, Deeks S, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4+ and CD8+ T cells in HIV-infected subjects. Blood 2000;96:785-93
  • Walker R, Bechtel C, Natarajan V, et al. Long-term in vivo survival of receptor-modified syngenic T cells in patients with HIV infection. Blood 2000;96:467-74
  • Deeks S, Wagner B, Anton P, et al. A phase II randomized study of HIV-specific T cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther 2002;5:788-97
  • Peterson C, Younan P, Jerome K, et al. Combinatorial anti-HIV gene therapy: using a multipronged approach to reach beyond HAART. Gene Ther 2013;20:695-702
  • Perez E, Wang J, Miller J, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008;26:808-16
  • Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010;28:839-47
  • Hofer U, Henley J, Exline C, et al. Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc-finger nucleases using humanized mice. J Infect Dis 2013;208:S160-4
  • Tebas P, Stein D, Tang W, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901-10
  • Kay M, Walker B. Engineering cellular resistance to HIV. N Engl J Med 2014;370:968-9
  • Blick G, Lalezari J, Hsu R, et al. Cyclophosphamide enhances SB-728-T engrafment to levels associated with HIV-RNA control [abstract 141]. Conference on retroviruses and opportunistic infections; 3 – 6 March 2014; Boston, MA, US
  • Brumme Z, Dong W, Yip B, et al. Clinical and immunological impact of HIV envelope V3 sequences variation after starting initial triple antiretroviral therapy. AIDS 2004;18:F1-9
  • Brumme Z, Goodrich J. Mayer, H, et al. Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral naïve individuals. J Infect Dis 2005;192:466-74
  • Poveda E, Briz V, de Mendoza C, et al. Prevalence of X4 tropic HIV-1 variants in patients with differences in disease stage and exposure to antiretroviral therapy. J Med Virol 2007;79:1040-6
  • Sierra-Enguita R, Rodriguez C, Aguilera A, et al. X4 tropic viruses are on the rise in recent HIV-1 seroconverters in Spain. AIDS 2014;28(11):1603-9
  • Kordelas L, Verheyen J, Esser S. Shift of HIV tropism in stem-cell transplantation with CCR5 delta32 mutation. N Engl J Med 2014;371:880-2
  • Didigu C, Wilen C, Wang J, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors CCR5 and CXCR4 protects CD4+ T cells from HIV-1 infection. Blood 2014;123:61-9
  • Clotet B, Raffi F, Cooper D, et al. Clinical management of treatment-experienced HIV-infected patients with the fusion inhibitor enfuvirtide: consensus recommendations. AIDS 2004;18:1137-46
  • Raffi F, Katlama C, Saag M, et al. Week-12 response to therapy as a predictor of week 24, 48 and 96 outcome in patients receiving the HIV fusion inhibitor enfuvirtide in the T-20 versus optimized regimen only (TORO) trials. Clin Infect Dis 2006;42:870-7
  • Egelhofer M, Brandenburg G, Martinius H, et al. Inhibition of HIV type 1 entry in cells expressing gp41-derived peptides. J Virol 2004;78:568-75
  • Kimpel J, Braun S, Qiu G, et al. Survival of the fittest: positive selection of the CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection. PLoS One 2010;5:e12357
  • Younan P, Polacino P, Kowalski J, et al. Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood 2013;122:179-87
  • Perez E, Riley J, Carroll R, et al. Suppression of HIV infection in primary CD4 T cells transduced with a self-inactivating lentiviral vector encoding a membrane expressed gp41 derived fusion inhibitor. Clin Immunol 2005;115:26-32
  • Van Lunzen J, Glaunsinger T, Stahmer I, et al. Transfer of autologous gene modified T cells in HIV-infected patients with advanced immune deficiency and drug resistant virus. Mol Ther 2007;15:1024-33
  • Kiem H, Peterson C, Younan P, et al. Modeling functional cure of HIV in nonhuman primates using gene-modified hematopoietic stem cells [abstract 419]. Conference on Retroviruses and Opportunistic Infections; 3 – 6 March 2014; Boston, MA, US
  • Leslle G, Wang J, Richardson M, et al. Cross-clade inhibition of HIV on primary cells by CXCR4 or CCR5 fused to the C34 peptide from gp41 HR2 [abstract 431]. Conference on Retroviruses and Opportunistic Infections; 3 – 6 March 2014; Boston, MA, US
  • Kiem H, Jerome K, Deeks S, McCune J. Hematopoietic stem-cell based gene therapy for HIV disease. Cell Stem Cell 2012;10:137-47
  • Suzuki K, Hattori S, Marks K, et al. Promoter targeting shRNA suppresses HIV-1 infection in vivo through transcriptional gene silencing. Mol Ther Nucleic Acids 2013;2:e137
  • Sarkar I, Hauber I, Hauber J, et al. HIV-1 proviral DNA excision using an evolved recombinase. Science 2007;316:1912-15
  • Lares M, Rossi J, Ouellet D. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 2010;28:570-9
  • Lisziewicz J, Sun D, Smythe J, et al. Inhibition of HIV type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc Natl Acad Sci USA 1993;90:8000-4
  • Bohjanen P, Liu Y, Garcia-Blanco M. TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation. Nucleic Acids Res 1997;25:4481-6
  • Lee S, Gallardo H, Gilboa E, Smith C. Inhibition of HIV type 1 in human T cells by a potent Rev response element decoy consisting of the 13-nucleotide minimal Rev-binding domain. J Virol 1994;68:8254-64
  • Kohn D, Bauer G, Rice C, et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34+ cells from the bone marrow of HIV-1 infected children. Blood 1999;94:368-71
  • Nishitsuji H, Tamura Y, Fuse T, et al. Inhibition of HIV-1 replication by 5’LTR decoy RNA. Nucleic Acids Res Suppl 2001;1:141-2
  • Michienzi A, Li S, Zaia J, Rossi J. A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci USA 2002;99:14047-52
  • Banerjea A, Li M, Remling L, et al. Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages. AIDS Res Ther 2004;1:2
  • Li M, Li H, Rossi J. RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann N Y Acad Sci 2006;1082:172-9
  • Anderson J, Li M, Palmer B, et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes - CCR5 ribozyme, tat-rev siRNA, and TAR decoy – in SCID-hu mouse-derived T cells. Mol Ther 2007;15:1182-8
  • Josefsson L, King M, Makitalo B, et al. Majority of CD4+ T cells from peripheral blood of HIV-1 infected individuals contain only one HIV DNA molecule. Proc Natl Acad Sci USA 2011;108:11199-204
  • Stone D, Kiem H, Jerome K. Targeted gene disruption to cure HIV. Curr Opin HIV AIDS 2013;8:217-23
  • Hauber I, Hofmann-Sieber H, Chemnitz J, et al. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. PLoS Pathog 2013;9:e1003587
  • Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014;156:836-43
  • Liu H, Chen Y, Niu Y, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014;14:323-8
  • Cathomen T, Ehl S. Translating the genomic revolution – targeted genome editing in primates. N Engl J Med 2014;370:2342-5
  • Garate Z, Davis B, Quintana-Bustamante O, Segovia J. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum Gene Ther 2013;24:571-83
  • Cannon P, Kon D and Kiem H. HIV eradication – from Berlin to Boston. Nat Biotechnol 2014;32:315-16
  • Henrich T, Hu Z, Li J, et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis 2013;207:1694-702
  • Yukl S, Boritz E, Busch M, et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog 2013;9:e1003347
  • Archin M, Margolis D. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis 2014;27:29-35
  • Ay E, Banati F, Mezei M, et al. Epigenetics of HIV infection: promising research areas and implications for therapy. AIDS Rev 2013;15:181-8
  • Fowler L, Saksena N. Micro-RNA: new players in HIV - pathogenesis, diagnosis, prognosis and antiviral therapy. AIDS Rev 2013;15:3-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.