539
Views
11
CrossRef citations to date
0
Altmetric
Review

Treatment of multiple myeloma bone disease: experimental and clinical data

, , , , , , , & show all

Bibliography

  • Haematology. UK myeloma forum. British Committee for Standards in Haematology. Diagnosis and management of multiple myeloma. Br J Haematol 2001;115:522-40
  • Ferlay JBF, Sankila R, Parkin DM. EUCAN: cancer incidence, mortality and prevalence in the European Union 1998, version 5.0. IARC CancerBase No 4. Lyon, France: IARCPress, 1999
  • Parker S.L, Davis KJ, Wingo PA, et al. Cancer statistics by race and ethnicity. CA Cancer J Clin 1998;48:31-48
  • Ries L, Krapcho M. editors. SEER Cancer Statistics Review, 1975-2004. National Cancer Institute; Bethesda, MD: 2007. based on November 2006 SEER data submission, posted to the SEER web site
  • Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003;78:21-33
  • Gridelli C. The use of bisphosphonates in elderly cancer patients. Oncologist 2007;12:62-71
  • Richardson PG, Blade J. The comprehensive clinical management of multiple myeloma and related-plasma cell disorders. Expert Rev Hematol 2014;7:1-3
  • Mohundro MM, Mohundro BL. On the horizon for multiple myeloma. Am J Manag Care 2012;18:SP140-3
  • Reece D. Update on the initial therapy of multiple myeloma. Am Soc Clin Oncol Educ Book. 2013 doi:10.1200/EdBook_AM.2013.33.e307
  • Genadieva-Stavric S, Cavallo F, Palumbo A. New Approaches to Management of Multiple Myeloma. Curr Treat Options Oncol 2014;15(2):157-70
  • Laubach JP, Tai YT, Richardson PG, Anderson KC. Daratumumab granted breakthrough drug status. Expert Opin Investig Drugs 2014;23:445-52
  • Brioli A, Tacchetti P, Zamagni E, Cavo M. Maintenance therapy in newly diagnosed multiple myeloma: current recommendations. Expert Rev Anticancer Ther 2014;14:581-94
  • Palumbo A, Magarotto V. Novel treatment paradigm for elderly patients with multiple myeloma. Am J Blood Res 2011;1:190-204
  • Lopuch S, Kawalec P, Wisniewska N. Effectiveness of targeted therapy as monotherapy or combined therapy in patients with relapsed or refractory multiple myeloma: a systematic review and meta-analysis. Hematology (Am Soc Hematol Educ Program) 2014. [Epub ahead of print]
  • Anderson KC. New insights into therapeutic targets in myeloma. Hematology Am Soc Hematol Educ Program 2011;2011:184-90
  • Cocks K, Cohen D, Wisloff F, et al. An international field study of the reliability and validity of a disease-specific questionnaire module (the QLQ-MY20) in assessing the quality of life of patients with multiple myeloma. Eur J Cancer 2007;43:1670-8
  • Bataille R, Chappard D, Marcelli C, et al. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin Invest 1991;88:62-6
  • Terpos E, Dimopoulos MA. Myeloma bone disease: pathophysiology and management. Ann Oncol 2005;16:1223-31
  • Christoulas D, Terpos E, Dimopoulos MA. Pathogenesis and management of myeloma bone disease. Expert Rev Hematol 2009;2:385-98
  • Sati HI, Greaves M, Apperley JF, et al. Expression of interleukin-1beta and tumour necrosis factor-alpha in plasma cells from patients with multiple myeloma. Br J Haematol 1999;104:350-7
  • Oyajobi BO, Franchin G, Williams PJ, et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 2003;102:311-19
  • Mitsiades CS, Mitsiades NS, Munshi NC, et al. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer 2006;42:1564-73
  • Zannettino AC, Farrugia AN, Kortesidis A, et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 2005;65:1700-9
  • Borset M, Hjorth-Hansen H, Seidel C, et al. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996;88:3998-4004
  • Lee JW, Chung HY, Ehrlich LA, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 2004;103:2308-15
  • Moreaux J, Hose D, Kassambara A, et al. Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration. Blood 2011;117:1280-90
  • Vallet S, Raje N. Bone anabolic agents for the treatment of multiple myeloma. Cancer Microenviron 2011;4:339-49
  • Modi ND, Lentzsch S. Bisphosphonates as antimyeloma drugs. Leukemia 2012;26:589-94
  • Terpos E, Kastritis E, Dimopoulos MA. Prevention and treatment of myeloma bone disease. Curr Hematol Malig Rep 2012;7:249-57
  • Terpos E, Rahemtulla A. Bisphosphonate treatment for multiple myeloma. Drugs Today (Barc) 2004;40:29-40
  • Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone 1996;18:75-85
  • Fleisch H. Bisphosphonates: mechanisms of action. Endocr Rev 1998;19:80-100
  • Suda T, Nakamura I, Jimi E, Takahashi N. Regulation of osteoclast function. J Bone Miner Res 1997;12:869-79
  • Thompson K, Rogers MJ, Coxon FP, Crockett JC. Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharmacol 2006;69:1624-32
  • Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 2003;9:2643-58
  • Roelofs AJ, Thompson K, Gordon S, Rogers MJ. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 2006;12:6222s-30s
  • Raikkonen J, Crockett JC, Rogers MJ, et al. Zoledronic acid induces formation of a pro-apoptotic ATP analogue and isopentenyl pyrophosphate in osteoclasts in vivo and in MCF-7 cells in vitro. Br J Pharmacol 2009;157:427-35
  • Russell RG, Xia Z, Dunford JE, et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 2007;1117:209-57
  • Terpos E, Dimopoulos MA, Sezer O. The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma. Leukemia 2007;21:1875-84
  • Terpos E, Morgan G, Dimopoulos MA, et al. International myeloma working group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol 2013;31:2347-57
  • Belch AR, Bergsagel DE, Wilson K, et al. Effect of daily etidronate on the osteolysis of multiple myeloma. J Clin Oncol 1991;9:1397-402
  • Daragon A, Humez C, Michot C, et al. Treatment of multiple myeloma with etidronate: results of a multicentre double-blind study. Groupe d’Etudes et de Recherches sur le Myelome (GERM). Eur J Med 1993;2:449-52
  • Menssen HD, Sakalova A, Fontana A, et al. Effects of long-term intravenous ibandronate therapy on skeletal-related events, survival, and bone resorption markers in patients with advanced multiple myeloma. J Clin Oncol 2002;20:2353-9
  • Pozzi S, Raje N. The role of bisphosphonates in multiple myeloma: mechanisms, side effects, and the future. Oncologist 2011;16:651-62
  • Lahtinen R, Laakso M, Palva I, et al. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Lancet 1992;340:1049-52
  • McCloskey EV, MacLennan IC, Drayson MT, et al. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br J Haematol 1998;100:317-25
  • Brincker H, Westin J, Abildgaard N, et al. Failure of oral pamidronate to reduce skeletal morbidity in multiple myeloma: a double-blind placebo-controlled trial. Danish-Swedish co-operative study group. Br J Haematol 1998;101:280-6
  • Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 1996;334:488-93
  • Berenson JR, Rosen LS, Howell A, et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 2001;91:1191-200
  • Rosen LS, Gordon D, Kaminski M, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 2001;7:377-87
  • Morgan GJ, Child JA, Gregory WM, et al. National Cancer Research Institute Haematological Oncology Clinical Studies, G, Effects of zoledronic acid versus clodronic acid on skeletal morbidity in patients with newly diagnosed multiple myeloma (MRC Myeloma IX): secondary outcomes from a randomised controlled trial. Lancet Oncol 2011;12:743-52
  • Morgan GJ, Davies FE, Gregory WM, et al. National cancer research institute haematological oncology clinical studies, g, effects of induction and maintenance plus long-term bisphosphonates on bone disease in patients with multiple myeloma: the medical research council myeloma ix trial. Blood 2012;119:5374-83
  • Croucher PI, De Hendrik R, Perry MJ, et al. Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. J Bone Miner Res 2003;18:482-92
  • Terpos E, Sezer O, Croucher PI, et al. The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. Ann Oncol 2009;20:1303-17
  • Berenson JR, Lichtenstein A, Porter L, et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 1998;16:593-602
  • Martiniani R, Di Loreto V, Di Sano C, et al. Biological activity of lenalidomide and its underlying therapeutic effects in multiple myeloma. Adv Hematol 2012;2012:842945
  • Melchert M, List A. The thalidomide saga. Int J Biochem Cell Biol 2007;39:1489-99
  • Kropff MH, Lang N, Bisping G, et al. Hyperfractionated cyclophosphamide in combination with pulsed dexamethasone and thalidomide (HyperCDT) in primary refractory or relapsed multiple myeloma. Br J Haematol 2003;122:607-16
  • Hussein MA, Baz R, Srkalovic G, et al. Phase 2 study of pegylated liposomal doxorubicin, vincristine, decreased-frequency dexamethasone, and thalidomide in newly diagnosed and relapsed-refractory multiple myeloma. Mayo Clin Proc 2006;81:889-95
  • Terpos E, Mihou D, Szydlo R, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia 2005;19:1969-76
  • Offidani M, Corvatta L, Marconi M, et al. Low-dose thalidomide with pegylated liposomal doxorubicin and high-dose dexamethasone for relapsed/refractory multiple myeloma: a prospective, multicenter, phase II study. Haematologica 2006;91:133-6
  • Palumbo A, Avonto I, Bruno B, et al. Intravenous melphalan, thalidomide and prednisone in refractory and relapsed multiple myeloma. Eur J Haematol 2006;76:273-7
  • Kropff M, Baylon HG, Hillengass J, et al. Thalidomide versus dexamethasone for the treatment of relapsed and/or refractory multiple myeloma: results from OPTIMUM, a randomized trial. Haematologica 2012;97:784-91
  • Tosi P, Zamagni E, Cellini C, et al. First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma. Eur J Haematol 2006;76:399-404
  • Corral LG, Kaplan G. Immunomodulation by thalidomide and thalidomide analogues. Ann Rheum Dis 1999;58(Suppl 1):I107-13
  • Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 2008;22:1925-32
  • Geitz H, Handt S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology 1996;31:213-21
  • Baz R, Walker E, Karam MA, et al. Lenalidomide and pegylated liposomal doxorubicin-based chemotherapy for relapsed or refractory multiple myeloma: safety and efficacy. Ann Oncol 2006;17:1766-71
  • Knop S, Gerecke C, Liebisch P, et al. Lenalidomide, adriamycin, and dexamethasone (RAD) in patients with relapsed and refractory multiple myeloma: a report from the German Myeloma Study Group DSMM (Deutsche Studiengruppe Multiples Myelom). Blood 2009;113:4137-43
  • Reece DE M-KE, Khan A. Phase I-II trial of oral cyclophosphamide, prednisone and lenalidomide (Revlimid)(CPR) for the treatment of patients with relapsed and refractory multiple myeloma. BLOOD 2009;116(21):1260-1260
  • Anderson KJS, Jakubowiak A. Lenalidomide, bortezomib, and dexamethasone in relapsed/refractory multiple myeloma (MM): encouraging outcomes and tolerability in a phase II study. J Clin Oncol 2009;27(15):8536
  • Schey SA, Morgan GJ, Ramasamy K, et al. The addition of cyclophosphamide to lenalidomide and dexamethasone in multiply relapsed/refractory myeloma patients; a phase I/II study. Br J Haematol 2010;150:326-33
  • Dimopoulos M, Spencer A, Attal M, et al. Multiple myeloma study, I, lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007;357:2123-32
  • Weber DKR, Chen C. Prolonged overall survival with lenalidomide plus dexamethasone compared with dexamethazone alone in patients with relapsed or refractory multiple myeloma. Blood 2007;110:412
  • Dimopoulos MA, Chen C, Spencer A, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia 2009;23:2147-52
  • Gay F, Hayman SR, Lacy MQ, et al. Lenalidomide plus dexamethasone versus thalidomide plus dexamethasone in newly diagnosed multiple myeloma: a comparative analysis of 411 patients. Blood 2010;115:1343-50
  • Terpos E, Christoulas D, Kastritis E, et al. Greek Myeloma Study G. The combination of lenalidomide and dexamethasone reduces bone resorption in responding patients with relapsed/refractory multiple myeloma but has no effect on bone formation: final results on 205 patients of the Greek myeloma study group. Am J Hematol 2014;89:34-40
  • San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 2013;14:1055-66
  • Dimopoulos MA, Leleu X, Palumbo A, et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia 2014;28(8):1573-85
  • Scott LJ. Pomalidomide: a review of its use in patients with recurrent multiple myeloma. Drugs 2014;74:549-62
  • Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615-22
  • Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004;4:349-60
  • Landowski TH, Megli CJ, Nullmeyer KD, et al. Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 2005;65:3828-36
  • Biehn SE, Moore DT, Voorhees PM, et al. Extended follow-up of outcome measures in multiple myeloma patients treated on a phase I study with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 2007;86:211-16
  • Palumbo A, Ambrosini MT, Benevolo G, et al. Gruppo Italiano Malattie Ematologicche d.A. Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 2007;109:2767-72
  • Pineda-Roman M, Zangari M, van Rhee F, et al. VTD combination therapy with bortezomib-thalidomide-dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia 2008;22:1419-27
  • Reece DE, Rodriguez GP, Chen C, et al. Phase I-II trial of bortezomib plus oral cyclophosphamide and prednisone in relapsed and refractory multiple myeloma. J Clin Oncol 2008;26:4777-83
  • Popat R, Oakervee H, Williams C, et al. Bortezomib, low-dose intravenous melphalan, and dexamethasone for patients with relapsed multiple myeloma. Br J Haematol 2009;144:887-94
  • Khan ML, Reeder CB, Kumar SK, et al. A comparison of lenalidomide/dexamethasone versus cyclophosphamide/lenalidomide/dexamethasone versus cyclophosphamide/bortezomib/dexamethasone in newly diagnosed multiple myeloma. Br J Haematol 2012;156:326-33
  • von Metzler I, Krebbel H, Hecht M, et al. Bortezomib inhibits human osteoclastogenesis. Leukemia 2007;21:2025-34
  • Terpos E, Heath DJ, Rahemtulla A, et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006;135:688-92
  • Zangari M, Esseltine D, Lee CK, et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 2005;131:71-3
  • Giuliani N, Morandi F, Tagliaferri S, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 2007;110:334-8
  • Heider U, Kaiser M, Muller C, et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 2006;77:233-8
  • Terpos E, Christoulas D, Kokkoris P, et al. Increased bone mineral density in a subset of patients with relapsed multiple myeloma who received the combination of bortezomib, dexamethasone and zoledronic acid. Ann Oncol 2010;21:1561-2
  • Delforge M, Terpos E, Richardson PG, et al. Fewer bone disease events, improvement in bone remodeling, and evidence of bone healing with bortezomib plus melphalan-prednisone vs. melphalan-prednisone in the phase III VISTA trial in multiple myeloma. Eur J Haematol 2011;86:372-84
  • Kubiczkova L, Pour L, Sedlarikova L, et al. Proteasome inhibitors - molecular basis and current perspectives in multiple myeloma. J Cell Mol Med 2014;18(6):947-61
  • Hurchla MA, Garcia-Gomez A, Hornick MC, et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia 2013;27:430-40
  • Kupisiewicz K. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention. Dan Med Bull 2011;58:B4277
  • Bird JM, Owen RG, D’Sa S, et al. On behalf of the Haemato-oncology Task Force of the British committee for Standards in Haematology (BCSH) and UK Myeloma Forum, Guidelines for the diagnosis and management of multiple myeloma. Br J Haematol 2011;154(1):32-75
  • Rosinol L, Blade J. Bortezomib and lenalidomide as front-line therapy for multiple myeloma. Leuk Lymphoma 2014;55(9):2024-31
  • Lok A, Mocquard J, Bourcier J, et al. Subcutaneous bortezomib incorporated into the bortezomib-thalidomide-dexamethasone regimen as part of front-line therapy in the context of autologous stem cell transplantation for multiple myeloma. Haematologica 2014;99:e33-4
  • Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev 1996;17:308-32
  • Voskaridou E, Terpos E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol 2004;127:127-39
  • Itoh K, Udagawa N, Matsuzaki K, et al. Importance of membrane- or matrix-associated forms of M-CSF and RANKL/ODF in osteoclastogenesis supported by SaOS-4/3 cells expressing recombinant PTH/PTHrP receptors. J Bone Miner Res 2000;15:1766-75
  • Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315-23
  • Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer 2001;92:460-70
  • Duplomb L, Baud’huin M, Charrier C, et al. Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. Endocrinology 2008;149:3688-97
  • Pearse RN, Sordillo EM, Yaccoby S, et al. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 2001;98:11581-6
  • Giuliani N, Colla S, Morandi F, et al. Lack of receptor activator of nuclear factor-kB ligand (RANKL) expression and functional production by human multiple myeloma cells. Haematologica 2005;90:275-8
  • Qiang YW, Chen Y, Stephens O, et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 2008;112:196-207
  • Yaccoby S, Pearse RN, Johnson CL, et al. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol 2002;116:278-90
  • Body JJ, Greipp P, Coleman RE, et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 2003;97:887-92
  • Body JJ, Facon T, Coleman RE, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006;12:1221-8
  • Fizazi KLA, Mariette X. Denosumab in patients with bone metastases from prostate, breast, and other cancers and elevated urinary N-telopeptide (uNTx) during intravenous bisphopshonate (IV BP) therapy: final results of a randomized. Phase II study.J Clin Oncol 2008;182:509-16
  • Vij RHN, Spencer A. An open-label, Phase II trial of denosumab in the treatment of relapsed (R) or plateau-phase (PP) multiple myeloma (MM). Blood 2007;110(Suppl 1):1054A
  • Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011;29:1125-32
  • Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclast induction. Biochem Biophys Res Commun 2000;268:2-7
  • Sugatani T, Alvarez UM, Hruska KA. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem 2003;90:59-67
  • Vallet S, Mukherjee S, Vaghela N, et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci USA 2010;107:5124-9
  • Chantry AD, Heath D, Mulivor AW, et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res 2010;25:2633-46
  • Ruckle J, Jacobs M, Kramer W, et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res 2009;24:744-52
  • Abdulkadyrov KM, Salogub GN, Khuazheva NK, et al. Sotatercept in patients with osteolytic lesions of multiple myeloma. Br J Haematol 2014;165:814-23
  • Scullen T, Santo L, Vallet S, et al. Lenalidomide in combination with an activin A-neutralizing antibody: preclinical rationale for a novel anti-myeloma strategy. Leukemia 2013;27:1715-21
  • Zhou F, Meng S, Song H, Claret FX. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev 2013;27:261-7
  • Politou MC, Heath DJ, Rahemtulla A, et al. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int J Cancer 2006;119:1728-31
  • Fulciniti M, Tassone P, Hideshima T, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009;114:371-9
  • Munshi NC AR, Beck JT. Early evidence of anabolic bone activity of BHQ880, a fully human anti-DKK1 neutralizing antibody: results of a Phase 2 study in previously untreated patients with smoldering multiple myeloma at risk for progression. Blood abstract meeting book ASH 2012;120(21):331
  • Hideshima T, Mitsiades C, Tonon G, et al. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007;7:585-98
  • Breitkreutz IVS, Raab MS. AZD6244 (ARRY-142886), a potent and selactive MEK1/2 inhibitor blocks the ERK1/2 signaling pathway, inhibits osteoclast differentiation and activation in multiple myeloma: clinical implications. Blood 2006;108:989a
  • Feng R, Oton AB, Patrene K, et al. Combination of the proteasome inhibitor bortezomib and a histone deacetylase inhibitor PXD101 results in synergistic inhibition of osteoclastogenesis and significantly stronger inhibition of multiple myeloma growth in vitro and in vivo. Blood 2006;108:153a-4a
  • Richardson PG, Mitsiades CS, Colson K, et al. Final results of a phase I trial of oral vorinostat in patients with advanced multiple myeloma. Blood 2007;110:11):1179
  • Voorhees PM, Manges RF, Somlo G, et al. A phase II multicenter study of CNTO 328,an anti-Il-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma (MM). J Clin Oncol 2009; 27 (15S): 8527
  • Li X, Ling W, Pennisi A, et al. Fenretinide inhibits myeloma cell growth, osteoclastogenesis and osteoclast viability. Cancer Lett 2009;284:175-81
  • Quinn JM, Itoh K, Udagawa N, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res 2001;16:1787-94
  • Maeda S, Hayashi M, Komiya S, et al. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 2004;23:552-63
  • Spinella-Jaegle S, Roman-Roman S, Faucheu C, et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 2001;29:323-30
  • Alliston T, Choy L, Ducy P, et al. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001;20:2254-72
  • Pfeilschifter J, Bonewald L, Mundy GR. Characterization of the latent transforming growth factor beta complex in bone. J Bone Miner Res 1990;5:49-58
  • Guise TA, Chirgwin JM. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res 2003;415:S32-8
  • Takeuchi K, Abe M, Hiasa M, et al. TGF-β inhibition restores terminal osteoblast differentiation to supress myeloma growth. PLoS One 2010;5:9870
  • Kitazoe K, Abe M, Hiasa M, et al. Valproic acid exerts anti-tumor as well as anti-angiogenic effects on myeloma. Int J Hematol 2009;89:45-57
  • Ai LS, Sun CY, Zhang L, et al. Inhibition of BDNF in multiple myeloma blocks osteoclastogenesis via down-regulated stroma-derived RANKL expression both in vitro and in vivo. PLoS One 2012;7:e46287
  • Sun CY, Chu ZB, She XM, et al. Brain-derived neurotrophic factor is a potential osteoclast stimulating factor in multiple myeloma. Int J Cancer 2012;130:827-36
  • Ruan J, Trotter TN, Nan L, et al. Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone 2013;57:10-17
  • Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol 2012;30:1953-9
  • van der Veer MS, de Weers M, van Kessel B, et al. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2011;96:284-90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.