760
Views
36
CrossRef citations to date
0
Altmetric
Review

Tissue engineering vascular grafts a fortiori: looking back and going forward

, , , , , , , , & show all

Bibliography

  • Coronary Heart Disease. National Health Service. Available from: www.nhs.uk/conditions/Coronary-heart-disease/Pages/Introduction.aspx [Last assessed 6 October 2014]
  • Al-Sabti HA, Al Kindi A, Al-Rasadi K, et al. Saphenous vein graft vs. radial artery graft searching for the best second coronary artery bypass graft. J Saudi Heart Assoc 2013;25(4):247
  • Taggart DP. Current status of arterial grafts for coronary artery bypass grafting. Ann Cardio Thorac Surg 2013;2(4):427
  • Tara S, Rocco KA, Hibino N, et al. Vessel bioengineering. Circ J 2013;78(1):12-19
  • Antman EM, Sabatine MS. Cardiovascular therapeutics: a companion to braunwald’s heart disease. Elsevier Health Sciences, 4th ed. Philadelphia; 2013
  • Lamm P, Juchem G, Milz S, et al. Autologous endothelialized vein allograft a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation 2001;104(Suppl 1):I-108-14
  • Conte MS. The ideal small arterial substitute: a search for the Holy Grail? FASEB J 1998;12(1):43-5
  • Langer R, Vacanti J. Tissue engineering. Science 1993;260(5110):920-6
  • L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006;12(3):361-5
  • L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 2007;357(14):1451-3
  • Mironov V, Kasyanov V, Markwald RR. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 2008;26(6):338-44
  • Li S, Henry JJ. Nonthrombogenic approaches to cardiovascular bioengineering. Annu Rev Biomed Eng 2011;13:451-75
  • Li S, Sengupta D, Chien S. Vascular tissue engineering: from in vitro to in situ. Wiley Interdiscip Rev Syst Biol Med 2014;6(1):61-76
  • Naito Y, Shinoka T, Duncan D, et al. Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 2011;63(4):312-23
  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986;231(4736):397-400
  • Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 2001;344(7):532-3
  • Olausson M, Patil PB, Kuna VK, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 2012;380(9838):230-7
  • Shin’oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005;129(6):1330-8
  • Patterson JT, Gilliland T, Maxfield MW, et al. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 2012;7(3):409-19
  • Marelli B, Achilli M, Alessandrino A, et al. Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromol Biosci 2012;12(11):1566-74
  • Peng HF, Liu JY, Andreadis ST, Swartz DD. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng Part A 2011;17(7-8):981-90
  • Yao L, Swartz DD, Gugino SF, et al. Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity. Tissue Eng 2005;11(7-8):991-1003
  • Peck M, Dusserre N, McAllister TN, L’Heureux N. Tissue engineering by self-assembly. Mater Today 2011;14(5):218-24
  • Rustad KC, Sorkin M, Levi B, et al. Strategies for organ level tissue engineering. Organogenesis 2010;6(3):151-7
  • Athanasiou KA, Niederauer GG, Agrawal C. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17(2):93-102
  • Wu H, Fan J, Chu CC, Wu J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med 2010;21(12):3207-15
  • Rocco KA, Maxfield MW, Best C, et al. In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Eng 2014. [Epub ahead of print]
  • Kim B-S, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998;16(5):224-30
  • Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res 2006;98(1):25-35
  • Seifu DG, Purnama A, Mequanint K, Mantovani D. Small-diameter vascular tissue engineering. Nat Rev Cardiol 2013;10(7):410-21
  • Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol 1999;10(2):123-9
  • Ye Q, Zund G, Jockenhoevel S, et al. Scaffold precoating with human autologous extracellular matrix for improved cell attachment in cardiovascular tissue engineering. ASAIO J 2000;46(6):730-3
  • Higgins SP, Solan AK, Niklason LE. Effects of polyglycolic acid on porcine smooth muscle cell growth and differentiation. J Biomed Mater Res A 2003;67(1):295-302
  • Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007;28(25):3587-93
  • Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 2003;24(5):759-67
  • Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol 2005;288(3):H1451-60
  • Dahl SL, Blum JL, Niklason LE. Bioengineered vascular grafts: can we make them off-the-shelf? Trends Cardiovasc Med 2011;21(3):83-9
  • Birchall M, Hamilton G. Tissue-engineered vascular replacements for children. Lancet 2012;380(9838):197-8
  • Olausson M, Patil PB, Kuna VK, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 2012;380(9838):230-7
  • Quint C, Arief M, Muto A, et al. Allogeneic human tissue-engineered blood vessel. J Vasc Surg 2012;55(3):790-8
  • Quint C, Kondo Y, Manson RJ, et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci USA 2011;108(22):9214-19
  • Rosellini E, Vozzi G, Barbani N, et al. Three-dimensional microfabricated scaffolds with cardiac extracellular matrix-like architecture. Int J Artif Organs 2010;33(12):885-94
  • Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Mater 2001;7(9):1035-40
  • Borschel GH, Huang Y-C, Calve S, et al. Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng 2005;11(5-6):778-86
  • Leyh RG, Wilhelmi M, Walles T, et al. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J Thorac Cardiovasc Surg 2003;126(4):1000-4
  • McAllister TN, Maruszewski M, Garrido SA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009;373(9673):1440-6
  • L’heureux N, Pâquet S, Labbé R, et al. A completely biological tissue-engineered human blood vessel. FASEB J 1998;12(1):47-56
  • L’Heureux N, Dusserre N, Marini A, et al. Technology insight: the evolution of tissue-engineered vascular grafts–from research to clinical practice. Nat Clin Prac Cardiovasc Med 2007;4(7):389-95
  • Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 2002;90(3):e40-8
  • Gauvin R, Ahsan T, Larouche D, et al. A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng Part A 2010;16(5):1737-47
  • Konig G, McAllister TN, Dusserre N, et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 2009;30(8):1542-50
  • Gwyther TA, Hu JZ, Billiar KL, Rolle MW. Directed cellular self-assembly to fabricate cell-derived tissue rings for biomechanical analysis and tissue engineering. J Vis Exp 2011(57):e3366
  • Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30(30):5910-17
  • Peck M, Gebhart D, Dusserre N, et al. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 2011;195(1-2):144-58
  • Peck MK, Dusserre N, Zagalski K, et al. New biological solutions for hemodialysis access. J Vasc Access 2010;12(3):185-92
  • Song L, Wang L, Shah PK, et al. Bioengineered vascular graft grown in the mouse peritoneal cavity. J Vasc Surg 2010;52(4):994-1002. e1002
  • Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 1999;85(12):1173-8
  • Sarkar S, Sales KM, Hamilton G, Seifalian AM. Addressing thrombogenicity in vascular graft construction. J Biomed Mater Res B Appl Biomater 2007;82(1):100-8
  • Herring M, Gardner A, Glover J. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 1978;84(4):498-504
  • Meinhart JG, Deutsch M, Fischlein T, et al. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann Thorac Surg 2001;71(5):S327-31
  • Epstein FH, Vane JR, Änggård EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990;323(1):27-36
  • Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev 2009;89(3):957-89
  • Yue X, Van der Lei B, Schakenraad J, et al. Smooth muscle cell seeding in biodegradable grafts in rats: a new method to enhance the process of arterial wall regeneration. Surgery 1988;103(2):206-12
  • Niklason L, Gao J, Abbott W, et al. Functional arteries grown in vitro. Science 1999;284(5413):489-93
  • Riha GM, Lin PH, Lumsden AB, et al. Review: application of stem cells for vascular tissue engineering. Tissue Eng 2005;11(9-10):1535-52
  • Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol 2012;5(1):19
  • Hashi CK, Zhu Y, Yang G-Y, et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007;104(29):11915-20
  • Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275(5302):964-6
  • Padfield GJ, Newby DE, Mills NL. Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J Am Coll Cardiol 2010;55(15):1553-65
  • Zhou M, Qiao W, Liu Z, et al. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(epsilon-caprolactone) nanofibrous scaffolds. Tissue Eng Part A 2014;20(1-2):79-91
  • Asahara T, Kawamoto A, Masuda H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 2011;29(11):1650-5
  • Roh JD, Sawh-Martinez R, Brennan MP, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA 2010;107(10):4669-74
  • Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A. Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med 1996;2(1):90-3
  • Matsumura G, Hibino N, Ikada Y, et al. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003;24(13):2303-8
  • Hibino N, Yi T, Duncan DR, et al. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J 2011;25(12):4253-63
  • Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 2010;139(2):431-6. e432
  • Mirensky TL, Nelson GN, Brennan MP, et al. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg 2009;44(6):1127-33
  • Cho SW, Kim IK, Kang JM, et al. Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng Part A 2008;15(4):901-12
  • Gearhart J. New potential for human embryonic stem cells. Science 1998;282(5391):1061-2
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76
  • Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007;2(12):3081-9
  • Hibino N, Duncan DR, Nalbandian A, et al. Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg 2012;143(3):696-703
  • Belair DG, Whisler JA, Valdez J, et al. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells. Stem Cell Rev 2014;1-15. [Epub ahead of print]
  • De Mel A, Cousins BG, Seifalian AM. Surface modification of biomaterials: a quest for blood compatibility. Int J Biomater 2012;2012:707863
  • Bouten C, Dankers P, Driessen-Mol A, et al. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 2011;63(4):221-41
  • Li C, Hill A, Imran M. In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. J Biomater Sci Polym Ed 2005;16(7):875-91
  • Rotmans JI, Heyligers JM, Verhagen HJ, et al. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 2005;112(1):12-18
  • Randone B, Cavallaro G, Polistena A, et al. Dual role of VEGF in pretreated experimental ePTFE arterial grafts. J Surg Res 2005;127(2):70-9
  • Stachelek SJ, Alferiev I, Choi H, et al. Cholesterol-derivatized polyurethane: Characterization and endothelial cell adhesion. J Biomed Mater Res A 2005;72A(2):200-12
  • Wang C, Zhang Q, Uchida S, Kodama M. A new vascular prosthesis coated with polyamino-acid urethane copolymer (PAU) to enhance endothelialization. J Biomed Mater Res B Appl Biomater 2002;62(3):315-22
  • Santhosh Kumar T, Krishnan LK. Endothelial cell growth factor (ECGF) enmeshed with fibrin matrix enhances proliferation of EC in vitro. Biomaterials 2001;22(20):2769-76
  • Jun HW, West JL. Endothelialization of microporous YIGSR/PEG-modified polyurethaneurea. Tissue Eng 2005;11(7-8):1133-40
  • Kidd KR, Patula VB, Williams SK. Accelerated endothelialization of interpositional 1-mm vascular grafts. J Surg Res 2003;113(2):234-42
  • Lehle K, Buttstaedt J, Birnbaum DE. Expression of adhesion molecules and cytokines in vitro by endothelial cells seeded on various polymer surfaces coated with titaniumcarboxonitride. J Biomed Mater Res A 2003;65A(3):393-401
  • Pollara P, Alessandri G, Bonardelli S, et al. Complete in vitro prosthesis endothelialization induced by artificial extracellular matrix. Invest Surg 1999;12(2):81-8
  • Noishiki Y, Ma XH, Yamane Y, et al. Succinylated collagen crosslinked by thermal treatment for coating vascular prostheses. Artif Organs 1998;22(8):672-80
  • Wissink M, Beernink R, Poot A, et al. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release 2000;64(1):103-14
  • Luong-Van E, Grøndahl L, Chua KN, et al. Controlled release of heparin from poly (epsiv-caprolactone) electrospun fibers. Biomaterials 2006;27(9):2042-50
  • Ahmed M, Hamilton G, Seifalian AM. The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials 2014;35(33):9033-40
  • Nezakati T, Tan A, Seifalian AM. Enhancing the electrical conductivity of a hybrid POSS-PCL/graphene nanocomposite polymer. J Colloid Interface Sci 2014;435:145-55
  • Chawla R, Tan A, Ahmed M, et al. A polyhedral oligomeric silsesquioxane-based bilayered dermal scaffold seeded with adipose tissue-derived stem cells: in vitro assessment of biomechanical properties. J Surg Res 2014;188(2):361-72
  • Sedaghati T, Jell G, Seifalian A. Investigation of Schwann cell behaviour on RGD-functionalized bioabsorbable nanocomposite for peripheral nerve regeneration. N Biotechnol 2014;31(3):203-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.