375
Views
13
CrossRef citations to date
0
Altmetric
Review

Sense–antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science

Bibliography

  • Miller A, Tanner J. Essentials of chemical biology; structure and dynamics of biological macromolecules. Wiley & Sons; Chichester: 2008
  • Anfinsen CB. Principles that govern folding of protein chains. Science 1973;181(4096):223-30
  • Jones H, Preuss M, Wright M, Miller AD. The mechanism of GroEL/GroES folding/refolding of protein substrates revisited. Org Biomol Chem 2006;4(7):1223-35
  • Kohler RJ, Preuss M, Jones H, Miller AD. Protein affinity purification and analysis technologies. In: Weiner MP, Lu Q, editors. Gene cloning and expression technologies. Eaton Publishing; Westborough, MA: 2002. p. 439-45
  • Preuss M, Miller AD. The affinity of the GroEL/GroES complex for peptides under conditions of protein folding. FEBS Lett 2000;466(1):75-9
  • Smith CM, Kohler RJ, Barho E, et al. Characterisation of Cpn60 (GroEL) bound cytochrome c: the passive role of molecular chaperones in assisting folding/refolding of proteins. J Chem Soc Perkin Trans 2 1999;1537-46
  • Biro JC. The Proteomic Code: a molecular recognition code for proteins. Theor Biol Med Model 2007;4:45
  • Biro JC. Discovery of proteomic code with mRNA assisted protein folding. Int J Mol Sci 2008;9(12):2424-46
  • Heal JR, Roberts GW, Raynes JG, et al. Specific interactions between sense and complementary peptides; the basis for the proteomic code. ChemBioChem 2002;3:136-51. 271
  • Davids JW, El-Bakri A, Heal J, et al. Design of antisense (complementary) peptides as selective inhibitors of cytokine interleukin-1. Angew Chem Int Ed 1997;36(9):962-7
  • Heal JR, Bino S, Roberts GW, et al. Mechanistic investigation into complementary (antisense) peptide mini-receptor inhibitors of cytokine interleukin-1. ChemBioChem 2002;3:76-85
  • Bhakoo A, Raynes JG, Heal JR, et al. De-novo design of complementary (antisense) peptide mini-receptor inhibitor of interleukin 18 (IL-18). Mol Immunol 2004;41(12):1217-24
  • Boraschi D, Tagliabue A, Miller AD. The immunostimulatory effect of IL-1β in vivo is blocked by antisense peptides complementary to the loop sequence 163-171. FEBS Lett 2009;583:792-7
  • Bost KL, Smith EM, Blalock JE. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci USA 1985;82(5):1372-5
  • Smith LR, Bost KL, Blalock JE. Generation of idiotypic and anti-idiotypic antibodies by immunization with peptides encoded by complementary RNA: a possible molecular basis for the network theory. J Immunol 1987;138(1):7-9
  • Carr DJ, Bost KL, Blalock JE. An antibody to a peptide specified by an RNA that is complementary to γ-endorphin mRNA recognizes an opiate receptor. J Neuroimmunol 1986;12(4):329-37
  • Martin-Moe SA, Lehr R, Cauley MD, Moe GR. Hydrophobic interactions and the design of receptor mimetic peptides. Pept Res 1995;8(2):70-6
  • Mulchahey JJ, Neill JD, Dion LD, et al. Antibodies to the binding site of the receptor for luteinizing hormone-releasing hormone (LHRH): generation with a synthetic decapeptide encoded by an RNA complementary to LHRH mRNA. Proc Natl Acad Sci USA 1986;83(24):9714-18
  • Elton TS, Dion LD, Bost KL, et al. Purification of an angiotensin II binding protein by using antibodies to a peptide encoded by angiotensin II complementary RNA. Proc Natl Acad Sci USA 1988;85(8):2518-22
  • Brentani RR, Ribeiro SF, Potocnjak P, et al. Characterization of the cellular receptor for fibronectin through a hydropathic complementarity approach. Proc Natl Acad Sci USA 1988;85(2):364-7
  • Abood LG, Michael GJ, Xin L, Knigge KM. Interaction of putative vasopressin receptor proteins of rat brain and bovine pituitary gland with an antibody against a nanopeptide encoded by the reverse message of the complementary mRNA to vasopressin. J Recept Res 1989;9(1):19-25
  • Swords BH, Carr DJ, Blalock JE, Berecek KH. An antibody directed against a peptide encoded by RNA complementary to mRNA for vasopressin recognizes putative vasopressin receptors. Neuroendocrinology 1990;51(4):487-92
  • Pascual DW, Blalock JE, Bost KL. Antipeptide antibodies that recognize a lymphocyte substance P receptor. J Immunol 1989;143(11):3697-702
  • Boquet D, Dery O, Frobert Y, et al. Is hydropathic complementarity involved in antigen-antibody binding? Mol Immunol 1995;32(4):303-8
  • Hanin V, Dery O, Boquet D, et al. Importance of hydropathic complementarity for the binding of the neuropeptide substance P to a monoclonal antibody: equilibrium and kinetic studies. Mol Immunol 1997;34(12-13):829-38
  • Kang CY, Brunck TK, Kieber-Emmons T, et al. Inhibition of self-binding antibodies (autobodies) by a VH-derived peptide. Science 1988;240(4855):1034-6
  • Maier CC, Moseley HN, Zhou SR, et al. Identification of interactive determinants on idiotypic-anti-idiotypic antibodies through comparison of their hydropathic profiles. Immunomethods 1994;5(2):107-13
  • Villa M, Durand-Gorde JM, Carayon P, Ruf J. Idiotypic study of a bispecific thyroglobulin and thyroperoxidase monoclonal antibody. J Autoimmun 1996;9(5):653-60
  • Araga S, LeBoeuf RD, Blalock JE. Prevention of experimental autoimmune myasthenia gravis by manipulation of the immune network with a complementary peptide for the acetylcholine receptor. Proc Natl Acad Sci USA 1993;90(18):8747-51
  • Araga S, Galin FS, Kishimoto M, et al. Prevention of experimental autoimmune myasthenia gravis by a monoclonal antibody to a complementary peptide for the main immunogenic region of the acetylcholine receptors. J Immunol 1996;157(1):386-92
  • Xu L, Araga S, Villain M, et al. Prevention and reversal of experimental autoimmune myasthenia gravis by monoclonal antibody to a complementary peptide. FASEB J 1999;13(5):A1123-3
  • Araga S, Kishimoto M, Doi S, Nakashima K. A complementary peptide vaccine that induces T cell anergy and prevents experimental allergic neuritis in Lewis rats. J Immunol 1999;163(1):476-82
  • Zhou SR, Whitaker JN. Specific modulation of T cells and murine experimental allergic encephalomyelitis by monoclonal anti-idiotypic antibodies. J Immunol 1993;150(4):1629-42
  • Heal JR, Roberts GW, Christie G, Miller AD. Inhibition of β-amyloid aggregation and neurotoxicity by complementary (antisense) peptides. ChemBioChem 2002;3:86-92
  • Imai M, Baranyi L, Okada N, Okada H. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments. Biochem Biophys Res Commun 2007;353(4):851-6
  • Huang Y, Zhao R, Luo J, et al. Design, synthesis and screening of antisense peptide based combinatorial peptide libraries towards an aromatic region of SARS-CoV. J Mol Recognit 2008;21(2):122-31
  • Song S, Liu D, Peng J, et al. Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo. FASEB J 2009;23(5):1396-404
  • Mekler L. Specific selective interaction between amino acid residues of the polypeptide chains. Biofizika 1969;14:581-4
  • Mekler L, Idlis R. Constructing models of three-dimensional molecules of biological polypeptides and nucleoproteins according to a general code determining specific linear recognition and binding by polypeptide amino acid residues both of each other and of the trinucleotides of polypeptides. VINITI Deposited Doc 1981;1476-81
  • Pullen JR, Dalmaris J, Serapian SA, Miller AD. Assessing the preferred solution conformation of an interacting sense-antisense (complementary) peptide pair. Bioorg Med Chem Lett 2013;23(2):496-502
  • Heal JR, Bino S, Ray KP, et al. A search within the IL-1 type I receptor reveals a peptide with hydropathic complementarity to the IL-1β trigger loop which binds to IL-1 and inhibits in vitro responses. Mol Immunol 1999;36(17):1141-8
  • Curto EV, Krishna NR. Nuclear magnetic resonance studies on complementary peptides. Immunomethods 1994;5(2):98-106
  • Chaiken I. Interactions and uses of antisense peptides in affinity technology. J Chromatogr 1992;597(1-2):29-36
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995;117(19):5179-97
  • Cheatham TEIII, Srinivasan J, Case DA, Kollman PA. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. J Biomol Struct Dyn 1998;16(2):265-80
  • Markus G, Tritsch GL, Parthasarathy R. A model for hydropathy-based peptide interactions. Arch Biochem Biophys 1989;272(2):433-9
  • Root-Bernstein RS. Amino acid pairing. J Theor Biol 1982;94(4):885-94
  • Fassina G, Roller PP, Olson AD, et al. Recognition properties of peptides hydropathically complementary to residues 356-375 of the c-raf protein. J Biol Chem 1989;264(19):11252-7
  • Biro J. Comparative analysis of specificity in protein-protein interactions. Part II.: the complementary coding of some proteins as the possible source of specificity in protein-protein interactions. Med Hypotheses 1981;7(8):981-93
  • Fassina G, Melli M. Identification of interactive sites of proteins and protein receptors by computer-assisted searches for complementary peptide sequences. Immunomethods 1994;5(2):114-20
  • Kunisawa T, Otsuka J. A possible mode of protein evolution. Role of the anti-sense strand in the generation of new proteins. Protein Seq Data Anal 1987;1(2):117-21
  • Stambuk N. Symbolic Cantor Algorithm (SCA): a method for analysis of gene and protein coding. Period Biol 1999;101(4):355-61
  • Zull JE, Taylor RC, Michaels GS, Rushforth NB. Nucleic acid sequences coding for internal antisense peptides: are there implications for protein folding and evolution? Nucleic Acids Res 1994;22(16):3373-80
  • Blalock JE, Bost KL. Ligand receptor characteristics of peptides encoded by complementary nucleic acids: implications for a molecular recognition code. Recent Prog Horm Res 1988;44:199-222
  • Huelseweh B, Kohl B, Hentschel H, et al. Translated anti-sense product of the Na/phosphate co-transporter (NaPi-II). Biochem J 1998;332:483-9
  • Lejohn HB, Cameron LE, Yang B, Rennie SL. Molecular characterization of an NAD-specific glutamate-dehydrogenase gene inducible by L-glutamine - Antisense gene pair arrangement with L-glutamine-inducible heat-shock 70-like protein gene. J Biol Chem 1994;269(6):4523-31
  • Van Den Eynde BJ, Gaugler B, Probst-Kepper M, et al. A new antigen recognized by cytolytic T lymphocytes on a human kidney tumor results from reverse strand transcription. J Exp Med 1999;190(12):1793-800
  • Vanhee-Brossollet C, Vaquero C. Do natural antisense transcripts make sense in eukaryotes? Gene 1998;211(1):1-9
  • Walker ND, McEwan NR, Wallace RJ. Overlapping sequences with high homology to functional proteins coexist on complementary strands of DNA in the rumen bacterium Prevotella albensis. Biochem Biophys Res Commun 1999;263(1):58-62
  • Brentani R. Informational capacity of both DNA strands. Trends Biochem Sci 1990;15(12):463
  • Adelman JP, Bond CT, Douglass J, Herbert E. Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 1987;235(4795):1514-17
  • Illingworth CJR, Chintipalli SV, Serapian SA, et al. The statistical significance of selected sense–antisense peptide interactions. J Comput Chem 2012;33:1440-7
  • Baranyi L, Campbell W, Ohshima K, et al. The antisense homology box - a new motif within proteins that encodes biologically-active peptides. Nat Med 1995;1(9):894-901
  • Biro JC. A novel intra-molecular protein-protein interaction code based on partial complementary coding of co-locating amino acids. Med Hypotheses 2006;66(1):137-42
  • Esque J, Oguey C, de Brevern AG. Comparative analysis of threshold and tesselation methods for determining protein contacts. J Chem Inf Model 2011;51:493-507
  • Sheedy R, Clarke F. Molecular interactions of actin. In: dos Remedios C, editor. Results and problems in cell differentiation. Springer-Verlag; Heidelberg: 2001. p. 155-64
  • Blalock JE, Bost KL. Binding of peptides that are specified by complementary RNAs. Biochem J 1986;234(3):679-83
  • Baranyi L, Campbell W, Okada H. Antisense homology boxes in C5a receptor and C5a anaphylatoxin: a new method for identification of potentially active peptides. J Immunol 1996;157(10):4591-601
  • Gho YS, Chae CB. Anti-angiogenin activity of the peptides complementary to the receptor-binding site of angiogenin. J Biol Chem 1997;272(39):24294-9
  • Soffer RL, Bandyopadhyay S, Rosenberg E, et al. Unexpected binding of an octapeptide to the angiotensin II receptor. Proc Natl Acad Sci USA 1987;84(24):9219-22
  • Moore GJ, Ganter RC, Franklin KJ. Angiotensin ’antipeptides’:(-)messenger RNA complementary to human angiotensin II (+)messenger RNA encodes an angiotensin receptor antagonist. Biochem Biophys Res Commun 1989;160(3):1387-91
  • Holsworth DD, Kiely JS, Root-Bernstein RS, Overhiser RW. Antisense-designed peptides: a comparative study focusing on possible complements to angiotensin II. Pept Res 1994;7(4):185-93
  • Ruiz-Opazo N, Akimoto K, Herrera VL. Identification of a novel dual angiotensin II/vasopressin receptor on the basis of molecular recognition theory. Nat Med 1995;1(10):1074-81
  • Slootstra J. Sense antisense complementarity of hormone-receptor interaction sites. Trends Biotechnol 1990;8(10):279-81
  • Johnson HM, Torres BA. A novel arginine vasopressin-binding peptide that blocks arginine vasopressin modulation of immune function. J Immunol 1988;141(7):2420-3
  • Knigge KM, Piekut DT, Berlove D. Immunocytochemistry of a vasopressin (AVP) receptor with anti-idiotype antibody: inhibition of staining with a peptide (PVA) encoded by an RNA that is complementary to AVP mRNA. Neurosci Lett 1988;86(3):269-71
  • Fassina G, Zamai M, Brigham-Burke M, Chaiken IM. Recognition properties of antisense peptides to Arg8-vasopressin/bovine neurophysin II biosynthetic precursor sequences. Biochemistry 1989;28(22):8811-18
  • Lu FX, Aiyar N, Chaiken I. Affinity capture of [Arg8]vasopressin-receptor complex using immobilized antisense peptide. Proc Natl Acad Sci USA 1991;88(9):3642-6
  • Kelly JM, Trinder D, Phillips PA, et al. Vasopressin antisense peptide interactions with the V1 receptor. Peptides 1990;11(4):857-62
  • Shahabi NA, Bost KL, Madhok TC, Sharp BM. Characterization of antisera to the naloxone-insensitive receptor for β-endorphin on U937 cells generated by using the complementary peptide strategy. J Pharmacol Exp Ther 1992;263(2):876-83
  • Fassina G, Consonni R, Zetta L, Cassani G. Design of hydropathically complementary peptides for Big Endothelin affinity purification. Int J Pept Protein Res 1992;39(6):540-8
  • Dillon J, Woods WT, Guarcello V, et al. A peptide mimetic of calcium. Proc Natl Acad Sci USA 1991;88(21):9726-9
  • Brown R, Meldrum C, Cousins S. Are sense-antisense peptide interactions between HIV-1 (gp120), CD4, and the proto oncogene product p56lck important? Med Hypotheses 1992;38(4):322-4
  • de Souza SJ, Brentani R. Collagen binding site in collagenase can be determined using the concept of sense-antisense peptide interactions. J Biol Chem 1992;267(19):13763-7
  • Ghiso J, Saball E, Leoni J, et al. Binding of cystatin C to C4: the importance of sense-antisense peptides in their interaction. Proc Natl Acad Sci USA 1990;87(4):1288-91
  • Wu X, Richards NT, Johns EJ, et al. Influence of ETR-p1/f1 antisense peptide on endothelin-induced constriction in rat renal arcuate arteries. Br J Pharmacol 1997;122(2):316-20
  • Sytkowski AJ, Donahue KA. Immunochemical studies of human erythropoietin using site-specific anti-peptide antibodies. Identification of a functional domain. J Biol Chem 1987;262(3):1161-5
  • Bazan JF. A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor β-chain. Biochem Biophys Res Commun 1989;164(2):788-95
  • D’Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell 1989;57(2):277-85
  • Carr DJ, Blalock JE, Bost KL. Monoclonal antibody against a peptide specified by [Met]-enkephalin complementary RNA recognizes the δ-class opioid receptor. Immunol Lett 1989;20(3):181-6
  • Misra PK, Haq W, Katti SB, et al. Enkephalin antisense peptides: design, synthesis, and biological activity. Pharm Res 1993;10(5):660-1
  • Stambuk N, Kopjar N, Sentija K, et al. Cytogenetic effects of Met-enkephalin (Peptid-M) on human lymphocytes. Croat Chem Acta 1998;71(3):591-605
  • Gartner TK, Taylor DB. The peptide Glu-His-Ile-Pro-Ala binds fibrinogen and inhibits platelet aggregation and adhesion to fibrinogen and vitronectin. Proc Soc Exp Biol Med 1991;198(1):649-55
  • Pasqualini R, Chamone DF, Brentani RR. Determination of the putative binding site for fibronectin on platelet glycoprotein IIb-IIIa complex through a hydropathic complementarity approach. J Biol Chem 1989;264(24):14566-70
  • Slootstra JW, Roubos EW. Two receptor binding regions of human FSH show sense-antisense similarity to the human FSH receptor. Biochem Biophys Res Commun 1991;179(1):266-71
  • Jones DS. Polypeptides. 13. Peptides related to the C-terminal tetrapeptide sequence of the gastrins by complementary reading of the genetic message. J Chem Soc Perkin Trans 1 1972;11:1407-15
  • McGuigan JE, Campbell-Thompson M. Complementary peptide to the carboxyl-terminal tetrapeptide of gastrin. Gastroenterology 1992;103(3):749-58
  • Weigent DA, Clarke BL, Blalock JE. Peptide design using a genetically patterned binary code: growth hormone-releasing hormone as a model. Immunomethods 1994;5(2):91-7
  • Imai M, Okada N, Okada H. Inhibition of HIV-1 infection by an intramolecular antisense peptide to T20 in gp160. Microbiol Immunol 2000;44(3):205-12
  • Bost KL, Blalock JE. Production of anti-idiotypic antibodies by immunization with a pair of complementary peptides. J Mol Recognit 1989;1(4):179-83
  • Blalock JE, Whitaker JN, Benveniste EN, Bost KL. Use of peptides encoded by complementary RNA for generating anti- idiotypic antibodies of predefined specificity. Methods Enzymol 1989;178:63-74
  • Knutson VP. Insulin-binding peptide. Design and characterization. J Biol Chem 1988;263(28):14146-51
  • Derrick JM, Taylor DB, Loudon RG, Gartner TK. The peptide LSARLAF causes platelet secretion and aggregation by directly activating the integrin αIIb β3. Biochem J 1997;325(2):309-13
  • Johnson HM, Langford MP, Lakhchaura B, et al. Neutralization of native human γ interferon (HuIFN γ) by antibodies to a synthetic peptide encoded by the 5’ end of HuIFN γ cDNA. J Immunol 1982;129(6):2357-9
  • Scapol L, Rappuoli P, Viscomi GC. Purification of recombinant human interferon-β by immobilized antisense peptides. J Chromatogr 1992;600(2):235-42
  • Fassina G, Cassani G. Design and recognition properties of a hydropathically complementary peptide to human interleukin 1 β. Biochem J 1992;282(Pt 3):773-9
  • Sisto A. Increase of the affinity between antisense peptides by optimization of hydropathic complementarity. In: Schneider C, Eberle A, editors. Peptides 1992. ESCOM Science Publishers BV; 1993. p. 747-8
  • Weigent DA, Hoeprich PD, Bost KL, et al. The HTLV-III envelope protein contains a hexapeptide homologous to a region of interleukin-2 that binds to the interleukin-2 receptor. Biochem Biophys Res Commun 1986;139(1):367-74
  • Fassina G, Cassani G, Gnocchi P, et al. Inhibition of interleukin-2/p55 receptor subunit interaction by complementary peptides. Arch Biochem Biophys 1995;318(1):37-45
  • Castronovo V, Taraboletti G, Sobel ME. Laminin receptor complementary DNA-deduced synthetic peptide inhibits cancer cell attachment to endothelium. Cancer Res 1991;51(20):5672-8
  • Root-Bernstein RS, Westall FC. Bovine pineal antireproductive tripeptide binds to luteinizing hormone- releasing hormone: a model for peptide modulation by sequence specific peptide interactions? Brain Res Bull 1986;17(4):519-28
  • al-Obeidi F, Hruby VJ, Hadley ME, et al. Design, synthesis, and biological activities of a potent and selective α-melanotropin antagonist. Int J Pept Protein Res 1990;35(3):228-34
  • Campbell W, Okada H. Antisense sequences of antigenic peptides are found in MHC class II molecules. Biochem Biophys Res Commun 1991;175(1):207-14
  • Borovsky D, Powell CA, Nayar JK, et al. Characterization and localization of mosquito-gut receptors for trypsin modulating oostatic factor using a complementary peptide and immunocytochemistry. FASEB J 1994;8(3):350-5
  • Wijkhuisen A, Sagot MA, Frobert Y, et al. Identification in the NK1 tachykinin receptor of a domain involved in recognition of neurokinin A and septide but not of substance P. FEBS Lett 1992;447(2-3):155-9
  • Fassina G. Oriented immobilization of peptide ligands on solid supports. J Chromatogr 1992;591(1-2):99-106
  • Pfister RR, Haddox JL, Blalock JE, et al. Synthetic complementary peptides inhibit a neutrophil chemoattractant found in the alkali-injured cornea. Cornea 2000;19(3):384-9
  • Sautebin L, Rombola L, Di Rosa M, et al. Synthesis and structure-activity of antisense peptides corresponding to the region for CaM-binding domain of the inducible nitric oxide synthase. Eur J Med Chem 2000;35(7-8):727-32
  • Bajpai A, Hooper KP, Ebner KE. Interactions of antisense peptides with ovine prolactin. Biochem Biophys Res Commun 1991;180(3):1312-17
  • Martins VR, Graner E, Garcia-Abreu J, et al. Complementary hydropathy identifies a cellular prion protein receptor. Nat Med 1997;3(12):1376-82
  • Shai Y, Flashner M, Chaiken IM. Anti-sense peptide recognition of sense peptides: direct quantitative characterization with the ribonuclease S-peptide system using analytical high-performance affinity chromatography. Biochemistry 1987;26(3):669-75
  • Shai Y, Brunck TK, Chaiken IM. Antisense peptide recognition of sense peptides: sequence simplification and evaluation of forces underlying the interaction. Biochemistry 1989;28(22):8804-11
  • Campbell-Thompson M, McGuigan JE. Canine parietal cell binding by antibodies to the complementary peptide of somatostatin. Am J Med Sci 1993;305(6):365-73
  • Ribeiro SM, Poczatek M, Schultz-Cherry S, et al. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-β. J Biol Chem 1999;274(19):13586-93
  • Fassina G, Cassani G, Corti A. Binding of human tumor necrosis factor α to multimeric complementary peptides. Arch Biochem Biophys 1992;296(1):137-43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.