650
Views
28
CrossRef citations to date
0
Altmetric
Drug Evaluation

Key points of basic theories and clinical practice in rAd-p53 (Gendicine™) gene therapy for solid malignant tumors

, MD DDS, , MD DDS, , MD DDS & , MD DDS

Bibliography

  • Walther W, Schlag PM. Current status of gene therapy for cancer. Curr Opin Oncol 2013;25(6):659-64
  • Wold WS, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2013;13(6):421-33
  • Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene 2013;525(2):162-9
  • Linzer DI, Levine AJ. Characterization of a 54k dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;1):43-52
  • Balint EE, Vousden KH. Activation and activities of the p53 tumour suppressor protein. Br J Cancer 2001;85(12):1813-23
  • Nemunaitis J, Clayman G, Agarwala SS, et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res 2009;24):7719-25
  • Mukhopadhyay T, Roth JA. A codon 248 p53 mutation retains tumor suppressor function as shown by enhancement of tumor growth by antisense p53. Cancer Res 1993;18):4362-6
  • Zhang WW, Fang X, Mazur W, et al. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther 1994;1(1):5-13
  • Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996;2(9):985-91
  • Clayman GL, el-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998;16(6):2221-32
  • Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 1993;329(18):1318-27
  • Li Y, Li LJ, Wang LJ, et al. Selective intra-arterial infusion of rad-p53 with chemotherapy for advanced oral cancer: a randomized clinical trial. BMC Med 2014;12:16
  • Peng Z. Current status of gendicine in china: recombinant human ad-p53 agent for treatment of cancers. Hum Gene Ther 2005;16(9):1016-27
  • Guan YS, Liu Y, He Q, et al. P53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: one-year follow-up. World J Gastroenterol 2011;17(16):2143-9
  • Tian G, Liu J, Zhou JS, Chen W. Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a pilot phase II trial. Anticancer Drugs 2009;20(5):389-95
  • Chen S, Chen J, Xi W, et al. Clinical therapeutic effect and biological monitoring of p53 gene in advanced hepatocellular carcinoma. Am J Clin Oncol 2014;37(1):24-9
  • Guan YS, Liu Y, Zou Q, et al. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up. J Zhejiang Univ Sci B 2009;10(5):331-40
  • Liu S, Chen P, Hu M, et al. Randomized, controlled phase ii study of post-surgery radiotherapy combined with recombinant adenoviral human p53 gene therapy in treatment of oral cancer. Cancer Gene Ther 2013;20(6):375-8
  • Zhang SW, Xiao SW, Liu CQ, et al. [Recombinant adenovirus-p53 gene therapy combined with radiotherapy for head and neck squamous-cell carcinoma]. Zhonghua Zhong Liu Za Zhi 2005;27(7):426-8
  • Pan JJ, Zhang SW, Chen CB, et al. Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol 2009;27(5):799-804
  • Yang ZX, Wang D, Wang G, et al. Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J Cancer Res Clin Oncol 2010;136(4):625-30
  • Zhang SW, Xiao SW, Liu CQ, et al. [Treatment of head and neck squamous cell carcinoma by recombinant adenovirus-p53 combined with radiotherapy: a phase ii clinical trial of 42 cases]. Zhonghua Yi Xue Za Zhi 2003;83(23):2023-8
  • Ha JH, Shin JS, Yoon MK, et al. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem 2013;288(10):7387-98
  • Higuchi Y, Asaumi J, Murakami J, et al. Effects of p53 gene therapy in radiotherapy or thermotherapy of human head and neck squamous cell carcinoma cell lines. Oncol Rep 2003;10(3):671-7
  • Cristofanilli M, Krishnamurthy S, Guerra L, et al. A nonreplicating adenoviral vector that contains the wild-type p53 transgene combined with chemotherapy for primary breast cancer: safety, efficacy, and biologic activity of a novel gene-therapy approach. Cancer 2006;107(5):935-44
  • Lee DH, Ha JH, Kim Y, et al. A conserved mechanism for binding of p53 DNA-binding domain and anti-apoptotic bcl-2 family proteins. Mol Cells 2014;37(3):264-9
  • Li Y, Feng H, Gu H, et al. The p53-puma axis suppresses ipsc generation. Nat Commun 2013;4:2174
  • Crighton D, Wilkinson S, Ryan KM. Dram links autophagy to p53 and programmed cell death. Autophagy 2007;3(1):72-4
  • Takahashi M, Kakudo Y, Takahashi S, et al. Overexpression of dram enhances p53-dependent apoptosis. Cancer Med 2013;2(1):1-10
  • Berkers CR, Maddocks OD, Cheung EC, et al. Metabolic regulation by p53 family members. Cell Metab 2013;18(5):617-33
  • Nishizaki M, Fujiwara T, Tanida T, et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer Res 1999;5(5):1015-23
  • Holmgren L, Jackson G, Arbiser J. P53 induces angiogenesis-restricted dormancy in a mouse fibrosarcoma. Oncogene 1998;17(7):819-24
  • Teodoro JG, Parker AE, Zhu X, Green MR. P53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 2006;313(5789):968-71
  • Li X, Xiao S, Li Y, Zhang S. Clinical antiangiogenic effect of recombinant adenovirus-p53 combined with hyperthermia for advanced cancer. Chin J Cancer Res 2013;25(6):749-55
  • Klammer H, Kadhim M, Iliakis G. Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells. Cancer Res 2010;70(21):8498-506
  • Burdak-Rothkamm S, Rothkamm K, McClelland K, et al. BRCA1, FANCD2 and CHK1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett 2014. [ Epub ahead of print]
  • Krenning L, Feringa FM, Shaltiel IA, et al. Transient activation of p53 in g2 phase is sufficient to induce senescence. Mol Cell 2014;55(1):59-72
  • te Poele RH, Okorokov AL, Jardine L, et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 2002;62(6):1876-83
  • Roberson RS, Kussick SJ, Vallieres E, et al. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 2005;65(7):2795-803
  • Gordon RR, Nelson PS. Cellular senescence and cancer chemotherapy resistance. Drug Resist Updat 2012;15(1-2):123-31
  • Weinrib L, Li JH, Donovan J, et al. Cisplatin chemotherapy plus adenoviral p53 gene therapy in ebv-positive and -negative nasopharyngeal carcinoma. Cancer Gene Ther 2001;8(5):352-60
  • Buller RE, Runnebaum IB, Karlan BY, et al. A phase I/II trial of rad/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002;9(7):553-66
  • Strigari L, Mancuso M, Ubertini V, et al. Abscopal effect of radiation therapy: interplay between radiation dose and p53 status. Int J Radiat Biol 2014;90(3):248-55
  • Lu C, El-Deiry WS. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 2009;14(4):597-606
  • El-Deiry WS. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003;22(47):7486-95
  • Farrand L, Kim JY, Byun S, et al. The diarylheptanoid hirsutenone sensitizes chemoresistant ovarian cancer cells to cisplatin via modulation of apoptosis-inducing factor and x-linked inhibitor of apoptosis. J Biol Chem 2014;289(3):1723-31
  • Hamada M, Fujiwara T, Hizuta A, et al. The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J Cancer Res Clin Oncol 1996;122(6):360-5
  • Cheung KJ, Horsman DE, Gascoyne RD. The significance of tp53 in lymphoid malignancies: mutation prevalence, regulation, prognostic impact and potential as a therapeutic target. Br J Haematol 2009;146(3):257-69
  • Vivenza D, Gasco M, Monteverde M, et al. Mdm2 309 polymorphism predicts outcome in platinum-treated locally advanced head and neck cancer. Oral Oncol 2012;48(7):602-7
  • van Slooten HJ, van De Vijver MJ, Borresen AL, et al. Mutations in exons 5-8 of the p53 gene, independent of their type and location, are associated with increased apoptosis and mitosis in invasive breast carcinoma. J Pathol 1999;189(4):504-13
  • Berge EO, Huun J, Lillehaug JR, et al. Functional characterisation of p53 mutants identified in breast cancers with suboptimal responses to anthracyclines or mitomycin. Biochim Biophys Acta 2013;1830(3):2790-7
  • Sakai K, Kazama S, Nagai Y, et al. Chemoradiation provides a physiological selective pressure that increases the expansion of aberrant tp53 tumor variants in residual rectal cancerous regions. Oncotarget 2014. [ Epub ahead of print]
  • Jiang G, Xin Y, Zheng JN, Liu YQ. Combining conditionally replicating adenovirus-mediated gene therapy with chemotherapy: a novel antitumor approach. Int J Cancer 2011;129(2):263-74
  • Prados J, Alvarez PJ, Melguizo C, et al. How is gene transfection able to improve current chemotherapy? The role of combined therapy in cancer treatment. Curr Med Chem 2012;19(12):1870-88
  • Wiedenfeld EA, Fernandez-Vina M, Berzofsky JA, Carbone DP. Evidence for selection against human lung cancers bearing p53 missense mutations which occur within the hla a*0201 peptide consensus motif. Cancer Res 1994;54(5):1175-7
  • Speetjens FM, Kuppen PJ, Welters MJ, et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res 2009;15(3):1086-95
  • Dai C, Gu W. P53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 2010;16(11):528-36
  • Kumai T, Ishibashi K, Oikawa K, et al. Induction of tumor-reactive t helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunol Immunother 2014;63(5):469-78
  • Specht JM, Wang G, Do MT, et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases. J Exp Med 1997;186(8):1213-21
  • Chiappori AA, Soliman H, Janssen WE, et al. Ingn-225: a dendritic cell-based p53 vaccine (ad.P53-dc) in small cell lung cancer: Observed association between immune response and enhanced chemotherapy effect. Expert Opin Biol Ther 2010;10(6):983-91
  • Saito H, Ando S, Morishita N, et al. A combined lymphokine-activated killer (LAK) cell immunotherapy and adenovirus-p53 gene therapy for head and neck squamous cell carcinoma. Anticancer Res 2014;34(7):3365-70
  • Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009;16(5):369-77
  • Bartek J, Lukas J. Mammalian g1- and s-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 2001;13(6):738-47
  • Wu Q, Kirschmeier P, Hockenberry T, et al. Transcriptional regulation during p21waf1/cip1-induced apoptosis in human ovarian cancer cells. J Biol Chem 2002;277(39):36329-37
  • Iaccarino I. Understanding metabolic alterations in cancer cells: a promising new/old approach to eradicate cancer. FEBS J 2012;279(15):2597
  • Gottlieb E, Vousden KH. P53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2010;2(4):a001040
  • Liang Y, Liu J, Feng Z. The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 2013;3(1):9
  • Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett 2012;4(6):1151-7
  • Guillaumond F, Leca J, Olivares O, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2013;110(10):3919-24
  • Kim JW, Gao P, Dang CV. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev 2007;26(2):291-8
  • Zhang C, Liu J, Wu R, et al. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget 2014;5(14):5535-46
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119(6):1420-8
  • Knouf EC, Garg K, Arroyo JD, et al. An integrative genomic approach identifies p73 and p63 as activators of mir-200 microrna family transcription. Nucleic Acids Res 2012;40(2):499-510
  • Chanrion M, Kuperstein I, Barriere C, et al. Concomitant notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nat Commun 2014;5:5005
  • Engelmann D, Putzer BM. Emerging from the shade of p53 mutants: N-terminally truncated variants of the p53 family in EMT signaling and cancer progression. Sci Signal 2014;7(345):re9
  • Cooks T, Harris CC, Oren M. Caught in the cross fire: P53 in inflammation. Carcinogenesis 2014;35(8):1680-90
  • Cui HM, Guan CL, Liu Q, Li LY. [Outcome of patients with recurrent epithelial ovarian carcinoma following treatment with recombinant human adenovirus p53 combined with chemotherapy.]. Chin J Cancer Biother 2014;21(4):450-4
  • Liu RR, Ji CY, Chen JC. Clinical effect of recombinant human p53 adv injection (gendicine) in combination with radiotherapy in patients suffering from recurrent nasopharyngeal carcinoma. J Otolarngol Ophthal Shandong Univ 2010;24(5):13-16
  • Ou SQ, Ma YL, Kang P, et al. Recombinant adenovirus-p53 gene therapy combined with transcatheter arterial chemoembolization for p53-positive and p53-negative hepatocellular carcinoma. Chin J Interv Imaging Ther 2010;7(4):354-7
  • Si YF, He CC, Lan GP, et al. [Recombinant adenovirus p53 agent injection combined with radiotherapy and chemotherapy for intermediate and advanced stage nasopharyngeal carcinoma]. ZhongGuo Zhong Liu Lin Chuang 2009;36(18):1031-9
  • Wang JG, Wang XH, Yang JQ, et al. [Treatment of local advanced non-small cell lung cancer with recombinant human p53 adenovirus combined with radiochemotherapy]. J GuiYang Medical College 2014;39(2):225-8
  • Zhu JX, Li ZM, Geng FY, et al. [Treatment of recurrent malignant gliomas by surgery combined with recombinant adenovirus-p53]. Chin J Cancer Prev Treat 2010;17(2):126-8
  • Chen CB, Pan JJ, Xu LY. [Recombinant adenovirus p53 agent injection combined with radiotherapy in treatment of nasopharyngeal carcinoma: a phase II clinical trial]. Zhonghua Yi Xue Za Zhi 2003;83(23):2033-5
  • Moon C, Oh Y, Roth JA. Current status of gene therapy for lung cancer and head and neck cancer. Clin Cancer Res 2003;9(14):5055-67
  • Alemany R. Cancer selective adenoviruses. Mol Aspects Med 2007;28(1):42-58
  • van Zeeburg HJ, Huizenga A, Brink A, et al. Comparison of oncolytic adenoviruses for selective eradication of oral cancer and pre-cancerous lesions. Gene Ther 2010;17(12):1517-24
  • Clayman GL, Frank DK, Bruso PA, Goepfert H. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin Cancer Res 1999;5(7):1715-22
  • Johnson KT, Rodicker F, Heise K, et al. Adenoviral p53 gene transfer inhibits human tenon’s capsule fibroblast proliferation. Br J Ophthalmol 2005;89(4):508-12
  • Li Y, Li LJ, Zhang ST, et al. In vitro and clinical studies of gene therapy with recombinant human adenovirus-p53 injection for oral leukoplakia. Clin Cancer Res 2009;15(21):6724-31
  • van Beusechem VW, van den Doel PB, Grill J, et al. Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res 2002;62(21):6165-71
  • Wang X, Su C, Cao H, et al. A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers. Mol Cancer Ther 2008;7(6):1598-603
  • Yamasaki Y, Tazawa H, Hashimoto Y, et al. A novel apoptotic mechanism of genetically engineered adenovirus-mediated tumour-specific p53 overexpression through e1a-dependent p21 and mdm2 suppression. Eur J Cancer 2012;48(14):2282-91
  • Tazawa H, Kagawa S, Fujiwara T. Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther 2013;13(11):1569-83
  • Chen CA, Lo CK, Lin BL, et al. Application of doxorubicin-induced RAAV2-p53 gene delivery in combined chemotherapy and gene therapy for hepatocellular carcinoma. Cancer Biol Ther 2008;7(2):303-9
  • Koom WS, Park SY, Kim W, et al. Combination of radiotherapy and adenovirus-mediated p53 gene therapy for MDM2-overexpressing hepatocellular carcinoma. J Radiat Res (Tokyo) 2012;53(2):202-10
  • Gridley DS, Slater JM. Gene therapy: a possible aid to cancer radiotherapy. Discov Med 2004;4(24):408-14
  • Lu P, Yang X, Huang Y, et al. Antitumor activity of a combination of RAD2P53 adenoviral gene therapy and radiotherapy in esophageal carcinoma. Cell Biochem Biophys 2011;59(3):147-52
  • Morris JC. Cancer gene therapy: lessons learned from experiences with chemotherapy. Mol Ther 2003;7(6):717-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.