1,476
Views
62
CrossRef citations to date
0
Altmetric
Review

Minicircle DNA vectors for gene therapy: advances and applications

, , , , , , & show all

Bibliography

  • Gaspar VM, Maia CJ, Queiroz JA, et al. Improved minicircle DNA biosynthesis for gene therapy applications. Hum Gene Ther Methods 2014;25(2):93-105
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014;15(8):541-55
  • Gill DR, Pringle IA, Hyde SC. Progress and Prospects: the design and production of plasmid vectors. Gene Ther 2009;16(2):165-71
  • Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 2012;161(2):554-65
  • Chang Kang H, Bae YH. Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide. Biomaterials 2011;32(21):4914-24
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441(7092):537-41
  • Kouprina N, Tomilin AN, Masumoto H, et al. Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opin Drug Deliv 2014;11(4):517-35
  • Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012;30(3):691-708
  • Sherman D. Advanced textbook on gene transfer, gene therapy and genetic pharmacology: principles, delivery and pharmacological and biomedical applications of nucleotide-based therapies. Imperial College Press; New Jersey: 2014
  • Osborn MJ, McElmurry RT, Lees CJ, et al. Minicircle DNA-based gene therapy coupled with immune modulation permits long-term expression of α-L-iduronidase in mice with mucopolysaccharidosis type I. Mol Ther 2011(3):450-60
  • Kay MA, He CY, Chen ZY. A robust system for production of minicircle DNA vectors. Nat Biotechnol 2010;28(12):1287-9
  • Maniar LEG, Maniar JM, Chen Z-Y, et al. Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther 2013;21(1):131-8
  • Grund M, Schleef M. Minicircle patents: a short IP overview of optimizing nonviral DNA vectors. Minicircle and miniplasmid DNA vectors: the future of nonviral and viral gene transfer. Wiley-Blackwell; Weinheim, Germany: 2013. p. 1-6
  • Darquet A, Cameron B, Wils P, et al. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 1997;4(12):1341-9
  • Oliveira PH, Mairhofer J. Marker-free plasmids for biotechnological applications – implications and perspectives. Trends Biotechnol 2013;31(9):539-47
  • Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491(7422):119-24
  • Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011;479(7374):538-41
  • Chen ZY, Riu E, He CY, et al. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 2008;16(3):548-56
  • Kreiss P, Mailhe P, Scherman D, et al. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 1999;27(19):3792-8
  • Ribeiro S, Mairhofer J, Madeira C, et al. Plasmid DNA size does affect nonviral gene delivery efficiency in stem cells. Cell Reprogram 2012;14(2):130-7
  • Lukacs GL, Haggie P, Seksek O, et al. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 2000;275(3):1625-9
  • Chen Z, He C, Kay M. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum Gene Ther 2005;16(1):126-31
  • Tejeda-Mansir A, Montesinos RM. Upstream processing of plasmid DNA for vaccine and gene therapy applications. Recent Pat Biotechnol 2008;2(3):156-72
  • Urthaler J, Schuchnigg H, Garidel P, Huber H. Industrial manufacturing of plasmid-DNA products for gene vaccination and therapy. In: Thalhamer J, Weiss R, Scheiblhofer S, editors. Gene vaccines. Springer; Vienna: 2012. p. 311-30
  • Carnes AE, Luke JM, Vincent JM, et al. Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression. Biotechnol Bioeng 2011;108(2):354-63
  • Simcikova M, Prather KL, Prazeres DM, Monteiro GA. On the dual effect of glucose during production of pBAD/AraC-based minicircles. Vaccine 2014;32(24):2843-6
  • Bigger BW, Tolmachov O, Collombet J-M, et al. An araC-controlled bacterialcre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 2001;276(25):23018-27
  • Groth AC, Calos MP. Phage integrases: biology and applications. J Mol Biol 2004;335(3):667-78
  • Nafissi N, Slavcev R. Bacteriophage recombination systems and biotechnical applications. Appl Microbiol Biotechnol 2014;98(7):2841-51
  • Cassell GD, Segall AM. Mechanism of inhibition of site-specific recombination by the Holliday junction-trapping Peptide WKHYNY: insights into phage lambda integrase-mediated strand exchange. J Mol Biol 2003;327(2):413-29
  • Fogg PCM, Colloms S, Rosser S, et al. New Applications for Phage Integrases. J Mol Biol 2014;426(15):2703-16
  • Katona R, Vanderbyl S, Perez C. Mammalian artificial chromosomes and clinical applications for genetic modification of stem cells: an overview. In: Hadlaczky G, editor. Mammalian chromosome engineering. Humana Press; New York, USA: 2011. p. 199-216
  • Schleef M. Minicircle and miniplasmid dna vectors: the future of non-viral and viral gene transfer. Wiley-Blackwell; Weinheim, Germany: 2013
  • Zechiedrich EL, Fogg J, Catanese DJ, et al. inventors Baylor College of Medicine, assignee Supercoiled minivectors for gene therapy applications. WO2013181440A. 2014. Available from: http://www.google.com/patents/WO2013181440A1?cl=en
  • Austin S, Ziese M, Sternberg N. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 1981;25(3):729-36
  • Marecki JC, Parajuli N, Crow JP, MacMillan-Crow LA. The use of the Cre/loxP system to study oxidative stress in tissue-specific manganese superoxide dismutase knockout models. Antioxid Redox Signal 2014;20(10):1655-70
  • Economides AN, Valenzuela DM, Davis S, Yancopoulos G. Methods of modifying genes in eukaryotic cells. US0155689. 2014. Available from: http://www.google.com/patents/US20070275466
  • Mayrhofer P, Iro M. Minicircle-DNA. In: Thalhamer J, Weiss R, Scheiblhofer S, editors. Gene vaccines. Springer; Vienna: 2012. p. 297-310
  • Moon HS, Abercrombie LL, Eda S, et al. Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Mol Biol 2011;75(6):621-31
  • Lombardo L. Genetic use restriction technologies: a review. Plant Biotechnol J 2014;12(8):995-1005
  • Lee N, Wilcox G, Gielow W, et al. In vitro activation of the transcription of araBAD operon by araC activator. Proc Natl Acad USA 1974;71(3):634-8
  • Khlebnikov A, Datsenko KA, Skaug T, et al. Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 2001;147(12):3241-7
  • Mayrhofer P, Blaesen M, Schleef M, Jechlinger W. Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med 2008;10(11):1253-69
  • Mayrhofer P, Jechlinger W, Lubitz W. inventors Peter Mayrhofer, assignee Minicircle vector production. US8647863. 2014. Available from: www.google.com/patents/US8647863
  • Chavez CL, Calos MP. Therapeutic applications of the φC31 integrase system. Curr Gene Ther 2011;11(5):375-81
  • Chen Z, He C, Ehrhardt A, Kay M. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003;8(3):495-500
  • Prazeres DMF. Good manufacturing practice and validation. Plasmid biopharmaceuticals: basics, applications, and manufacturing. In: Duarte Miguel F. Prazeres. John Wiley & Sons, Inc.; Hoboken, New Jersey: 2011. p. 327-55
  • Schmeer M, Schleef M. Pharmaceutical grade large-scale plasmid DNA manufacturing process. In: Rinaldi M, Fioretti D, Iurescia S, editors. DNA vaccines. Springer; New York: 2014. p. 219-40
  • EMA. Guideline on follow-up of patients administered with gene therapy medicinal products. London: 2009. p. 12. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/11/WC500013424.pdf
  • Gaspar VM, Cruz C, Queiroz JA, et al. Sensitive detection of peptide–minicircle DNA interactions by surface plasmon resonance. Anal Chem 2013;85(4):2304-11
  • Ronald JA, Cussó L, Chuang H-Y, et al. Development and Validation of Non-Integrative, Self-Limited, and Replicating Minicircles for Safe Reporter Gene Imaging of Cell-Based Therapies. PLoS One 2013;8(8):e73138
  • Zuo Y, Wu J, Xu Z, et al. Minicircle-oriP-IFNγ: a novel targeted gene therapeutic system for EBV positive human nasopharyngeal carcinoma. PLoS One 2011;6(5):e19407
  • Chang C-W, Christensen LV, Lee M, Kim SW. Efficient expression of vascular endothelial growth factor using minicircle DNA for angiogenic gene therapy. J Control Release 2008;125(2):155-63
  • Vaysse L, Gregory LG, Harbottle RP, et al. Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo. J Gene Med 2006;8(6):754-63
  • Zheng C, Baum B. Evaluation of promoters for use in tissue-specific gene delivery. In: Le Doux J, editor. Gene therapy protocols. Humana Press; Totowa, USA; 2008. p. 205-19
  • Nehlsen K, Broll S, Kandimalla R, et al. Replicating minicircles: overcoming the limitations of transient and of stable expression systems. Minicircle and plasmid dna vectors–the future of non-viral and viral gene transfer. Wiley-VCH, Hoboken; New Jersey, USA: 2012
  • Argyros O, Wong S, Fedonidis C, et al. Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. J Mol Med 2011;89(5):515-29
  • Gaspar VM, Marques JG, Sousa F, et al. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery. Nanotechnology 2013;24(27):275101
  • Wang S, Li Y, Fan J, et al. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 2014;35(26):7588-97
  • Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014;66:110-16
  • Duncan R, Gaspar R. Nanomedicine (s) under the Microscope. Mol Pharm 2011;8(6):2101-41
  • Novo L, Mastrobattista E, van Nostrum CF, Hennink WE. Targeted decationized polyplexes for cell specific gene delivery. Bioconjug Chem 2014;25(4):802-12
  • Keeney M, Ong S-G, Padilla A, et al. Development of Poly (β-amino ester)-based biodegradable nanoparticles for nonviral delivery of minicircle DNA. ACS Nano 2013;7(8):7241-50
  • Zhang C, Gao S, Jiang W, et al. Targeted minicircle DNA delivery using folate–poly (ethylene glycol)–polyethylenimine as non-viral carrier. Biomaterials 2010;31(23):6075-86
  • Chrastina A, Massey KA, Schnitzer JE. Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol2011;3(4):421-37
  • Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 2014;13(9):655-72
  • Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 2011;6(2):176-85
  • Yameen B, Choi WI, Vilos C, et al. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014;190:485-99
  • Lam A, Dean D. Progress and prospects: nuclear import of nonviral vectors. Gene Ther 2010;17(4):439-47
  • Breuzard G, Tertil M, Goncalves C, et al. Nuclear delivery of NF-Kβ-assisted DNA/polymer complexes: plasmid DNA quantitation by confocal laser scanning microscopy and evidence of nuclear polyplexes by FRET imaging. Nucleic Acids Res 2008;36(12):e71
  • Gonçalves C, Ardourel M-Y, Decoville M, et al. An optimized extended DNA kappa B site that enhances plasmid DNA nuclear import and gene expression. J Gene Med 2009;11(5):401-11
  • Monopoli MP, Walczyk D, Campbell A, et al. Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 2011;133(8):2525-34
  • Knop K, Hoogenboom R, Fischer D, Schubert US. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 2010;49(36):6288-308
  • Rodriguez PL, Harada T, Christian DA, et al. Minimal" Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013;339(6122):971-5
  • Moyano DF, Saha K, Prakash G, et al. Fabrication of Corona-Free Nanoparticles with Tunable Hydrophobicity. ACS Nano 2014;8(7):6748-55
  • Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 2014;9(2):223-43
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013;65(1):71-9
  • Schleich N, Po C, Jacobs D, et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 2014;194:82-91
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 2009;8(7):543-57
  • Black KC, Wang Y, Luehmann HP, et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 2014;8(5):4385-94
  • Chung T-H, Wu S-H, Yao M, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007;28(19):2959-66
  • Ge Z, Chen Q, Osada K, et al. Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials 2014;35(10):3416-26
  • Shang L, Nienhaus GU. Small fluorescent nanoparticles at the nano–bio interface. Mater Today 2013;16(3):58-66
  • Au S, Wu W, Panté N. Baculovirus nuclear import: open, nuclear pore complex (NPC) sesame. Viruses 2013;5(7):1885-900
  • van Gaal EV, Oosting RS, van Eijk R, et al. DNA nuclear targeting sequences for non-viral gene delivery. Pharm Res 2011;28(7):1707-22
  • Akita H, Kudo A, Minoura A, et al. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 2009;30(15):2940-9
  • G Walmsley G, Hyun J, McArdle A, et al. Induced pluripotent stem cells in regenerative medicine and disease modeling. Curr Stem Cell Res Ther 2014;9(2):73-81
  • Ishii T, Pera RAR, Greely HT. Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells. Cell Stem Cell 2013;13(2):145-8
  • Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 2010;143(4):508-25
  • Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010;24(20):2239-63
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76
  • Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev 2014;23(12):1285-300
  • González F, Boué S, Belmonte JCI. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 2011;12(4):231-42
  • Jia F, Wilson KD, Sun N, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 2010;7(3):197-9
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74
  • Gaspar VM, Correia IJ, Sousa Â, et al. Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. J Control Release 2011;156(2):212-22
  • Zhao N, Fogg JM, Zechiedrich L, Zu Y. Transfection of shRNA-encoding Minivector DNA of a few hundred base pairs to regulate gene expression in lymphoma cells. Gene Ther 2011;18(3):220-4
  • Wu J, Xiao X, Zhao P, et al. Minicircle-IFNγ induces antiproliferative and antitumoral effects in human nasopharyngeal carcinoma. Clin Cancer Res 2006;12(15):4702-13
  • Gaspar VM, Gonçalves C, de Melo-Diogo D, et al. Poly (2-ethyl-2-oxazoline)–PLA-g–PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics. J Control Release 2014;189:90-104
  • Silva F, Passarinha L, Sousa F, et al. Influence of growth conditions on plasmid DNA production. J Microbiol Biotechnol 2009;19(11):1408-14
  • Food U, Administration D. Guidance for industry: considerations for plasmid DNA vaccines for infectious disease indications. Rockville, MD: 2005
  • Stenler S, Wiklander OP, Badal-Tejedor M, et al. Micro-minicircle gene therapy: implications of size on fermentation, complexation, shearing resistance, and expression. Mol Ther Nucleic Acids 2014;3:e140
  • Mota É, Sousa Â, Černigoj U, et al. Rapid quantification of supercoiled plasmid deoxyribonucleic acid using a monolithic ion exchanger. J Chromatography A 2013;1291:114-21
  • Tonga GY, Moyano DF, Kim CS, Rotello VM. Inorganic nanoparticles for therapeutic delivery: trials, tribulations and promise. Curr Opin Colloid Interface Sci 2014;19(2):49-55
  • Mody VV, Cox A, Shah S, et al. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 2014;4(4):385-92
  • U.S. Food Drug Administration. Guidance for FDA reviewers and sponsors: content and review of chemistry, manufacturing, and control (CMC) information for human somatic cell therapy investigational new drug applications (INDs). US FDA, Center for Biologics Evaluation and Research, Rockville, MD. 2008. Available from: http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Xenotransplantation/ucm074131.htm
  • B’Hymer C. Residual solvent testing: a review of gas-chromatographic and alternative techniques. Pharm Res 2003;20(3):337-44
  • Grodowska K, Parczewski A. Organic solvents in the pharmaceutical industry. Acta Pol Pharm 2010;67(1):3-12
  • U.S. Food and Drug Administration. Guidance for industry, Q3C impurities: residual solvents. Center for Biologics Evaluation and Research, Rockville, MD; 1997. Available from: http://wwwfdagov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073394pdf
  • Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Total Environ 2012;421–422:173-83
  • U.S. Food and Drug Administration. Guidance for industry: guidance for human somatic cell therapy and gene therapy. US FDA, Center for Biologics Evaluation and Research, Rockville, MD; 1998. Available from: http://wwwfdagov/biologicsbloodvaccines/guidance complianceregulatoryinformation/guidances/cellularandgenetherapy/ucm072987htm [Last accessed September 2014]
  • Kobelt D, Schleef M, Schmeer M, et al. Performance of high quality minicircle DNA for in vitro and in vivo gene transfer. Mol Biotechnol 2012;53(1):80-9
  • Miyata K, Nishiyama N, Kataoka K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 2012;41(7):2562-74
  • Bonamassa B, Hai L, Liu D. Hydrodynamic gene delivery and its applications in pharmaceutical research. Pharm Res 2011;28(4):694-701
  • DeMuth PC, Su X, Samuel RE, et al. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Advanced Materials 2010;22(43):4851-6
  • Indermun S, Luttge R, Choonara YE, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release 2014;185:130-8
  • Donnelly RF, Al-Zahrani S, Zaric M, et al. Vaccine delivery using microneedles. Molecular vaccines. Springer; Switzerland: 2014. p. 697-715
  • Kwon MJ, An S, Choi S, et al. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med 2012;14(4):272-8
  • Yoon CS, Jung HS, Kwon MJ, et al. Sonoporation of the minicircle-VEGF165 for wound healing of diabetic mice. Pharm Res 2009;26(4):794-801
  • Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – a review. Prog Polym Sci 2013;38(8):1232-61
  • Nam J, Won N, Bang J, et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev 2013;65(5):622-48
  • Sawant RR, Patel NR, Torchilin VP. Therapeutic delivery using cell-penetrating peptides. Eur J Nanomed 2013;5(3):141-58
  • Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 2013;587(12):1693-702
  • Wang F, Wang Y, Zhang X, et al. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 2014;174:126-36
  • Bolhassani A, Khavari A, Orafa Z. Electroporation–advantages and drawbacks for delivery of drug, gene and vaccine. Application of Nanotechnology in Drug Delivery, Ali Demir Sezer. InTech Europe; Croatia: 2014
  • Lakshmanan S, Gupta GK, Avci P, et al. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014;71:98-114
  • Mitragotri S. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev 2013;65(1):100-3
  • Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharmaceut Med 2011;25(5):293-306
  • Rychak JJ, Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliv Rev 2014;72:82-93
  • Yi H, Kim Y, Kim J, et al. A new strategy to deliver synthetic protein drugs: self-reproducible biologics using minicircles. Sci Rep 2014;5:5961
  • Huang M, Nguyen P, Jia F, et al. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation 2011;124(Suppl 1):S46-54
  • Dietz WM, Skinner NE, Hamilton SE, et al. Minicircle DNA is superior to plasmid DNA in eliciting antigen-specific CD8+ T-cell responses. Mol Ther 2013;21(8):1526-35
  • Viecelli HM, Harbottle RP, Wong SP, et al. Treatment of phenylketonuria using minicircle-based naked-DNA gene transfer to murine liver. Hepatology 2014;60(3):1035-43
  • Wang Q, Jiang W, Chen Y, et al.et al. Electroporation of minicircle DNA as a novel method of vaccine delivery to enhance HIV-1-specific immune responses. J Virol 2014;88(4):1924-34
  • Kobelt D, Aumann J, Schmidt M, et al. Preclinical study on combined chemo-and nonviral gene therapy for sensitization of melanoma using a human TNF-alpha expressing MIDGE DNA vector. Mol Oncol 2014;8(3):609-19
  • Lijkwan MA, Hellingman AA, Bos EJ, et al. Short hairpin RNA gene silencing of prolyl hydroxylase-2 with a minicircle vector improves neovascularization of hindlimb ischemia. Hum Gene Ther 2014;25(1):41-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.