73
Views
12
CrossRef citations to date
0
Altmetric
Review

RNA interference as a potential tool in the treatment of leukaemia

&
Pages 1921-1929 | Published online: 22 Feb 2005

Bibliography

  • ELBASHIR SM, HARBORTH J, LENDECKEL W et al: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature (2001) 411(6836):494–498.
  • CAPLEN NJ, PARRISH S, IMANI F,FIRE A, MORGAN RA: Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA (2001) 98(17):9742–9747.
  • DYKXHOORN DM, NOVINA CD, SHARP PA: Killing the messenger: short rnas that silence gene expression. Nat. Rev Ma Cell. Biol. (2003) 4(6):457–467.
  • SPARKES RS: Cytogenetics of leukemia. N. Engl. Med. (1984) 311:848–850.
  • HAGEMEIJER A, VAN DER PLAS DC: Clinical relevance of cytogenetics in acute leukemia. Haernatol Blood Transfus. (1990) 33:23–30.
  • ROWLEY JD: The role of chromosome translocations in leukemogenesis. Sernin. Hernatol (1999) 36(4 Suppl. 7):59–72.
  • LUGO TG, PENDERGAST AM, MAUER AJ, WITTE ON: Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science (1990) 247:1079–1082.
  • GOLDMAN JM, DRUKER BJ: Chronic myeloid leukemia: current treatment options. Blood (2001) 98(7):2039–2042.
  • WILDA M, FUCHS U, WOSSMANN W, BORKHARDT A: Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene (2002) 21(37):5716–5724.
  • SCHERR M, BATTMER K, WINKLER T et al.: Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood (2003) 101(4):1566–1569.
  • MAHON FX, DEININGER MW, SCHULTHEIS B et al: Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor 5TI571: diverse mechanisms of resistance. Blood (2000) 96(3):1070–1079.
  • BARTHE C, CONY-MAKHOUL P, MELO JV, MAHON JR: Roots of clinical resistance to STI-571 cancer therapy. Science (2001) 293(5538):2163.
  • HOCHHAUS A, KREIL S, CORBIN A et al.: Roots of clinical resistance to STI-571 cancer therapy. Science (2001) 293(5538):2163.
  • WOHLBOLD L, VAN DER KUIP H, MIETHING C et al.: Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (5TI571). Blood (2003) 102(6):2236–2239.
  • CHEN J, WALL NR, KOCHER K et al.:Stable expression of small interfering RNA sensitizes TEL-PDGEbetaR to inhibition with imatinib or rapamycin. I Clin. Invest. (2004) 113(12):1784–1791.
  • GOLUB TR, BARKER GE LOVETT M, GILLILAND DG: Fusion of the PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell (1994) 77:307–316.
  • CIMINO G, RAPANOTTI MC, SPROVIERI T, ELIA L: ALL1 gene alterations in acute leukemia: biological and clinical aspects. Haernatologica (1998) 83(4):350–357.
  • GREGORINI A, CINTI C, YOUNG BD:Molecular abnormalities in leukemia: the 11q23 story so far. Biol. Regal. Homeost. Agents (1998) 12(4):95–105.
  • PUI CH, BEHM FG, DOWNING JR et al.: 11 q23/IVILL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. Clin. Oncol (1994) 12(5):909–915.
  • DIMARTINO JF, CLEARY ML: Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br. Haernatol (1999) 106(3):614–626.
  • DORDELMANN M, REITER A, BORKHARDT A et al.: Prednisone response is the strongest predictor oftreatment outcome in infant acutelymphoblastic leukemia. Blood (1999) 94(4):1209–1217.
  • PUI CH: Acute lymphoblastic leukemia in children. Curr. Opin. Oncol. (2000) 12(1):3–12.
  • BORKHARDT A, WUCHTER C, VIEHMANN S et al.: Infant acute lymphoblastic leukemia - combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia (2002) 16(9):1685–1690.
  • ARMSTRONG SA, STAUNTON JE, SILVERMAN LB et al.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. (2002) 30(1):41–47.
  • DEBERNARDI S, LILLINGTON DM, CHAPLIN T et al.: Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer (2003) 37(2):149–158.
  • DOWNING JR: The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br. J. Haematol. (1999) 106(2):296–308.
  • MIYOSHI H, KOZU T, SHIMIZU K et al.: The 4;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. (1993) 12:2715–2721.
  • MULLOY JC, CAMMENGA J,BERGUIDO FJ et al.: Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood (2003) 102(13):4369–4376.
  • BUCHHOLZ F, REFAELI Y, TRUMPP A, BISHOP JM: Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep. (2000) 1(2):133–139.
  • MULLOY JC, CAMMENGA J, MACKENZIE KL et al.: The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood (2002) 99(1):15–23.
  • ASOU H, TASHIRO S, HAMAMOTO K et al.: Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood (1991) 77(9):2031–2036.
  • MATOZAKI S, NAKAGAWA T, KAWAGUCHI R et al.: Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t(8,21) who acquired monosomy 17 during disease progression. Br: J. Haematol. (1995) 89(4):805–811.
  • HEIDENREICH 0, KRAUTERJ, RIEHLE H et al.: AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of 4;21)-positive leukemic cells. Blood (2003) 101(8):3157–3163.
  • MARTINEZ N, DRESCHER B, RIEHLE H et al.: The oncogenic fusion protein RUNX1-CBFA2T1 supports Proliferation and inhibits senescence in 4,21)-positive leukaemic cells. BMC Cancer (2004) 4(1):44.
  • KOZU T, MIYOSHI H, SHIMIZU K et al.: Junctions of the AML1/MTG8 (ETO) fusion are constant in 4;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction. Blood (1993) 82(01270–1276.
  • VOUSDEN KH, LU X: Live or let die: the cell's response to p53. Nat. Rev Cancer (2002) 2(8):594–604.
  • PELLER S, ROTTER V: TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum. Mutat. (2003) 21(3):277–284.
  • MARTINEZ LA, NAGUIBNEVA I, LEHRMANN H et al.: Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Nati Acad. Sci. USA (2002) 99(23):14849–14854.
  • STERNBERG DW, GILLILAND DG: The role of signal transducer and activator of transcription factors in leukemogenesis. Clin. Oncol. (2004) 22(2):361–371.
  • KONNIKOVA L, KOTECKI M, KRUGER MM, COCHRAN BH: Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer (2003) 3(1):23.
  • CHATTERJEE M, STUEHMER T, HERRMANN P et al.: Combined disruption of both the MEK/ERK and the IL-6R/STAT3 pathways is required to induce apoptosis of multiple myeloma cells in the presence of bone marrow stromal cells. Blood (2004) (In Press).
  • HEIDENREICH 0: Oncogene suppression by small interfering RNAs. Curr. Pharm. Biotech. (2004) 5(4):349–354.
  • SCHERR M, MORGAN MA, EDER M: Gene silencing mediated by small interfering RNAs in mammalian cells. Curr. Med. Chem. (2003) 10(3):245–256.
  • RITTER U, DAMM-WELK C, FUCHS U et al.: Design and evaluation of chemically synthesized siRNA targeting the NPM-ALK fusion site in anaplastic large cell lymphoma (ALCL). Oligonucleotides (2003) 13(5):365–373.
  • BRAASCH DA, PAROO Z, CONSTANTINESCU A et al.: Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett (2004) 14(5):1139–1143.
  • BRAASCH DA, JENSEN S, LIU Y et al.: RNA interference in mammalian cells by chemically-modified RNA. Biochemistry (2003) 42(26):7967–7975.
  • CZAUDERNA F, FECHTNER M, DAMES S et al.: Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. (2003) 31(11):2705–2716.
  • HAMADA M, OHTSUKA T,KAWAIDA R et al.: Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs. Antisense Nucleic Add Drug Dev. (2002) 12(5):301–309.
  • HARBORTH J, ELBASHIR SM, VANDENBURGH K et al.: Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Add Drug Dev. (2003) 13(2):83–105.
  • SORENSEN DR, LEIRDAL M, SIOUD M: Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Mol. Biol. (2003) 327(4):761–766.
  • LEWIS DL, HAGSTROM JE, LOOMIS AG, WOLFF JA, HERWEIJER H: Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. (2002) 32(1):107–108.
  • SONG E, LEE SK, WANG J et al.: RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. (2003) 9(3):347–351.
  • LIU F, SONG Y, LIU D: Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Thec (1999) 6(7):1258–1266.
  • BOUSSIF 0, LEZOUALC'H F,ZANTA MA et al.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA (1995) 92(16):7297–7301.
  • BOLOGNA JC, DORN G, NATT F, WEILER J: Linear polyethylenimine as a tool for comparative studies of antisense and short double-stranded RNA oligonucleotides. Nucleosides Nucleotides Nucleic Acids (2003) 22(5-8):1729–1731.
  • TUSCHL T: Expanding small RNA interference. Nat. Biotechnol (2002) 20(5):446–448.
  • BRUMMELKAMP TR, BERNARDS R, AGAMI R: A system for stable expression of short interfering RNAs in mammalian cells. Science (2002) 296(5567):550–553.
  • MIYAGISHI M, TAIRA K: U6 promoter driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol (2002) 20(5):497–500.
  • PAUL CP, GOOD PD, WINER I, ENGELKE DR: Effective expression of small interfering RNA in human cells. Nat. Biotechnol (2002) 20(5):505–508.
  • SCHERR M, BATTMER K, GANSER A, EDER M: Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle (2003) 2(3)251–257.
  • FISH RJ, KRUITHOF EK: Short-termcytotoxic effects and long-term instability ofRNAi delivered using lentiviral vectors. BMC MM. Biol. (2004) 5(1):9.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al: LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (2003) 302(5644):415–419.
  • MARTINEZ J, TUSCHL T: RISC is a 5' phosphomonoester-producing RNA endonuclease. Genes Dev. (2004) 18(9):975–980.
  • SAXENA S, JONSSON ZO, DUTTA A: Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. Biol. Chem. (2003) 278(45):44312–44319.
  • JACKSON AL, BARTZ SR, SCHELTER J et al: Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol (2003) 21(6):635–637.
  • BRIDGE AJ, PEBERNARD S,DUCRAUX A, NICOULAZ AL, IGGO R:Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. (2003) 34(3):263–264.
  • SLEDZ CA, HOLKO M, DE VEER MJ, SILVERMAN RH, WILLIAMS BR: Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. (2003) 5(9):834–839.
  • KIM DH, LONGO M, HAN Y et al: Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol (2004) 22(3):321–325.
  • KARIKO K, BHUYAN P, CAPODICI J, WEISSMAN D: Small interfering RNAs mediate sequence-independent gene suppression and induce immune activationby signaling through toll-like receptor 3. Immunol (2004) 172(11):6545–6549.
  • HOLEN T, AMARZGUIOUI M, WIIGER MT, BABAIE E, PRYDZ H: Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. (2002) 30(8):1757–1766.
  • CHEN CZ, LI L, LODISH HF, BARTEL DP: MicroRNAs modulate hematopoietic lineage differentiation. Science (2004) 303(5654):83–86.
  • http://cgap.nci.nih.gov/Chromosomes/ MitelmanThe Cancer Genome Anatomy Project: Mitelman Database of Chromosome Aberrations in Cancer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.