67
Views
8
CrossRef citations to date
0
Altmetric
Review

Development of herpesvirus-based episomally maintained gene delivery vectors

, &
Pages 493-505 | Published online: 03 Mar 2005

Bibliography

  • SCHMIDT-WOLF GD, SCHMIDT-WOLF IG: Non-viral and hybrid vectors in human gene therapy: an update. Trends MM. Med. (2003) 9:67–72.
  • CAVAZZANA-CALVO M, HACEIN-BEY S, DE SAINT BASILE G et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (2000) 288:669–672.
  • ••Important paper with first report ofsuccessful treatment in a gene therapy trial.
  • HACEIN-BEY-ABINA S, LE DEIST F, CARLIER F et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl. Med. (2002) 346:1185–1193.
  • MARSHALL E: Clinical research. Gene therapy a suspect in leukemia-like disease. Science (2002) 298:34–35.
  • MARSHALL E: Gene therapy: second child in French trial is found to have leukemia. Science (2003) 299:320.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl. Med. (2003) 348:255–256.
  • •Article of interest.
  • SANCHEZ-GARCIA I, RABBITTS TH:LIM domain proteins in leukaemia and development. Semin. Cancer Biol. (1993) 4:349–358.
  • OLIVARES EC, HOLLIS RP, CHALBERG TW et al: Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat. Biotechnol (2002) 20:1124–1128.
  • •Article of interest.
  • GROTH AC, OLIVARES EC, THYAGARAJAN B, CALOS MP: A phage integrase directs efficient site-specific integration in human cells. Proc. Nati Acad. Sci. USA (2000) 97:5995–6000.
  • THYAGARAJAN B, GUIMARAES MJ, GROTH AC, CALOS MP: Mammalian genomes contain active recombinase recognition sites. Gene (2000) 244:47–54.
  • THYAGARAJAN B, OLIVARES EC, HOLLIS RP, GINSBURG DS, CALOS MP: Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. MM. Cell. Biol. (2001) 21:3926–3934.
  • WADE-MARTINS R, WHITE RE, KIMURA H, COOK PR, JAMES MR: Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat. Biotechnol. (2000) 18:1311–1314.
  • •Article of interest.
  • ROWNTREE RK, VASSAUX G, MCDOWELL TL et al.: An element in intron 1 of the CFTR gene augments intestinal expression in vivo. Hum. Ma Genet. (2001) 10:1455–1464.
  • LI Q, HARJU S, PETERSON KR: Locus control regions: coming of age at a decade plus. Trends Genet. (1999) 15:403–408.
  • SCHIEDNER G, MORRAL N, PARKS RJet al.: Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. (1998) 18:180–183.
  • •Article of interest.
  • ROIZMAN B, CARMICHAEL LE, DEINHARDT F et al.: Herpesviridae. Definition, provisional nomenclature, and taxonomy. The Herpesvirus Study Group, the International Committee on Taxonomy of Viruses. Intervirology (1981) 16:201–217.
  • GLORIOSO JC, DELUCA NA, FINK DJ:Development and application of herpes simplex virus vectors for human gene therapy. Ann. Rev Microbiol (1995) 49:675–710.
  • LACHMANN RH, EFSTATHIOU S: Gene transfer with herpes simplex vectors. Carr. Opin. Mol. Ther. (1999) 1:622–632.
  • MCCORMICK F: Cancer gene therapy: fringe or cutting edge? Nat. Rev Cancer (2001) 1:130–141.
  • MARKERT JM, GILLESPIE GY, WEICHSELBAUM RR, ROIZMAN B, WHITLEY RJ: Genetically engineered HSV in the treatment of glioma: a review. Rev Med. Virol (2000) 10:17–30.
  • SHAH AC, BENOS D, GILLESPIE GY, MARKERT JM: Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. Neurooncol (2003) 65:203–226.
  • FINK DJ, GLORIOSO JC: Engineering herpes simplex virus vectors for gene transfer to neurons. Nat. Med. (1997) 3:357–359.
  • ARTHUR JL, SCARPINI CG, CONNOR V et al.: Herpes simplex virus type 1 promoter activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons M vitro. Virol (2001) 75:3885–3895.
  • FRAEFEL C, JACOBY DR, BREAKEFIELD XO: Herpes simplex virus type 1-based amplicon vector systems. Adv. Virus Res. (2000) 55:425–451.
  • SPAETE RR, FRENKEL N: The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell (1982) 30:295–304.
  • •Article of interest.
  • SENA-ESTEVES M, SAEKI Y, FRAEFEL C, BREAKEFIELD XO: HSV-1 amplicon vectors-simplicity and versatility. MM. Ther. (2000) 2:9–15.
  • YATES JL, WARREN N, SUGDEN B: Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature (1985) 313:812–815.
  • ••Important article describing themechanism of episomal persistence in EBV.
  • YATES JL, GUAN N: Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells.Virol. (1991) 65:483–488.
  • ADAMS A: Replication of latent Epstein-Barr virus genomes in Raji cells.' Virol. (1987) 61:1743–1746.
  • RAWLINS DR, MILMAN G, HAYWARD SD, HAYWARD GS: Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell (1985) 42:859–868.
  • YATES J, WARREN N, REISMAN D, SUGDEN B: A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl. Acad. Sci. USA (1984) 81:3806–3810.
  • KOONS MD, VAN SCOY S, HEARING J: The replicator of the Epstein-Barr virus latent cycle origin of DNA replication, oriP, is composed of multiple functional elements. Virol (2001) 75:10582–10592.
  • GAHN TA, SCHILDKRAUT CL: The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell (1989) 58:527–535.
  • LUPTON S, LEVINE AJ: Mapping geneticelements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. MM. Cell. Biol. (1985) 5:2533–2542.
  • AIYAR A, TYREE C, SUGDEN B: The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J. (1998) 17:6394–6403.
  • MARECHAL V, DEHEE A, CHIKHI-BRACHET R et al.: Mapping EBNA- 1 domains involved in binding to metaphase chromosomes. " Virol (1999) 73:4385–4392.
  • KANDA T, OTTER M, WAHL GM: Coupling of mitotic chromosome tethering and replication competence in Epstein-Barr virus-based plasmids. Ma Cell. Biol. (2001) 21:3576–3588.
  • ITO S, GOTOH E, OZAWA S, YANAGI K: Epstein-Barr virus nuclear antigen-1 is highly colocalized with interphase chromatin and its newly replicated regions in particular. " Gen. Virol (2002) 83:2377–2383.
  • ITO S, YANAGI K: Epstein-Barr virus (EBV) nuclear antigen 1 colocalizes with cellular replication foci in the absence of EBV plasmids. Virol (2003) 77:3824–3831.
  • SEARS J, KOLMAN J, WAHL GM, AIYAR A: Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. J. Virol (2003) 77:11767–11780.
  • BANERJEE S, LIVANOS E, VOS JM: Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein-Barr virus. Nat. Med. (1995) 1:1303–1308.
  • WHITE RE, WADE-MARTINS R, JAMES MR: Infectious delivery of 120-kilobase genomic DNA by an Epstein-Barr virus amplicon vector. MM. Ther. (2002) 5:427–435.
  • FICKENSCHER H, FLECKENSTEIN B: Herpesvirus saimiri. Philos. Trans. R. Soc. (2001) 356:545–567.
  • ALBRECHT J, NICHOLAS J, BILLER D et al.: Primary structure of the herpesvirus saimiri genome. Virol (1992) 66:5047–5058.
  • BAER R, BANKIER AT, BIGGIN MD et al.: DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature (1984) 310:207–211.
  • BUBLOT M, LOMONTE P, LEQUARRE AS et al.: Genetic relationships between bovine herpesvirus 4 and the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. Virology (1992) 190:654–665.
  • RUSSO JJ, BOHENZKY RA, CHIEN MCet al.: Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Nati Acad. Sci. USA (1996) 93:14862–14867.
  • VIRGIN H 4TH, LATREILLE P, WAMSLEY P et al.: Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. (1997) 71:5894–5904.
  • BANKIER AT, DIETRICH W, BAER R et al.: Terminal repetitive sequences in herpesvirus saimiri virion DNA. I. Vim/. (1985) 55:133–139.
  • DESROSIERS RC, FALK LA: Herpesvirus saimiri strain variability. J. Virol. (1982) 43:352–356.
  • MEDVECZKY P, SZOMOLANYI E, DESROSIERS RC, MULDER C: Classification of herpesvirus saimiri into three groups based on extreme variation in a DNA region required for oncogenicity. Virol (1984) 52:938–944.
  • MEDVECZKY MM, SZOMOLANYI E, HESSELTON R et al.: Herpesvirus saimiri strains from three DNA subgroups have different oncogenic potentials in New Zealand white rabbits. J. Virol. (1989) 63:3601–3611.
  • BIESINGER B, MULLER-FLECKENSTEIN I, SIMMER B et al.: Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc. Nati Acad. Sci. USA (1992) 89:3116–3119.
  • MITTRUCKER HW, MULLER-FLECKENSTEIN I, FLECKENSTEIN B, FLEISCHER B: CD2-mediated autocrine growth of herpes virus saimiri-transformed human T lymphocytes. J. Exp. Med. (1992) 176:909–913.
  • MURTHY SCS, TRIMBLE JJ, DESROSIERS RC: Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J. Viral. (1989) 63:3307–3314.
  • CHOI JK, ISHIDO S, JUNG JU: The collagen repeat sequence is a determinant of the degree of herpesvirus saimiri STP transforming activity. J. Virol (2000) 74:8102–8110.
  • BIESINGER B, TRIMBLE JJ, DESROSIERS RC, FLECKENSTEIN B: The divergence between two oncogenic herpesvirus saimiri strains in a genomic region related to the transforming phenotype. Virology (1990) 176:505–514.
  • BIESINGER B, TSYGANKOV AY, FICKENSCHER H et al: The product of the herpesvirus saimiri open reading frame 1 (tip) interacts with T cell-specific kinase p561ck in transformed cells. " Biol. Chem. (1995) 270:4729–4734.
  • JUNG JU, DESROSIERS RC: Identification and characterization of the herpesvirus saimiri oncoprotein STP-C488. Virol (1991) 65:6953–6960.
  • JUNG JU, LANG SM, FRIEDRICH U et al.: Identification of Lck-binding elements in tip of herpesvirus saimiri. J. Biol. Chem. (1995) 270:20660–20667.
  • JUNG JU, LANG SM, JUN T et al: Downregulation of Lck-mediated signal transduction by tip of herpesvirus saimiri. Virol (1995) 69:7814–7822.
  • DESROSIERS RC, BAKKER A, KAMINE J et al.: A region of the herpesvirus saimiri genome required for oncogenicity. Science (1985) 228:184–187.
  • DESROSIERS RC, DANIEL PS, WALDRON LM, LET VIN NL: Nononcogenic deletion mutants of herpesvirus saimiri are defective for M vitro immortalization. J. Virol. (1986) 57:701–705.
  • DUBOISE SM, GUO J, CZAJAK S, DESROSIERS RC, JUNG JU: STP and Tip are essential for herpesvirus saimiri oncogenicity. Virol (1998) 72:1308–1313.
  • SIMMER B, ALT M, BUCKREUS I et al.:Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines. " Gen. Virol (1991) 72:1953–1958.
  • STEVENSON AJ, COOPER M, GRIFFITHS JC et al: Assessment of herpesvirus saimiri as a potential human gene therapy vector.j Med. Virol (1999) 57:269–277.
  • STEVENSON AJ, CLARKE D, MEREDITH DM et al.: Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Ther. (2000) 7:464–471.
  • GRASSMANN R, FLECKENSTEIN B: Selectable recombinant herpesvirus saimiri is capable of persisting in a human T-cell line. J. Virol (1989) 63:1818–1821.
  • HALL KT, GILES MS, GOODWIN DJ et al.: Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. Vim/. (2000) 74:7331–7337.
  • SMITH PG, COLETTA PL, MARKHAM AF, WHITEHOUSE A: In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Ther. (2001) 8:1762–1769.
  • •Article of interest.
  • BESTOR TH: Gene silencing as a threat to the success of gene therapy. Clin. Invest. (2000) 105:409–411.
  • FINK DJ, GLORIOSO JC: Herpes simplex virus-based vectors: problems and some solutions. Adv. Neurol (1997) 72:149–156.
  • STEVENS JG, WAGNER EK, DEVI-RAO GB, COOK ML, FELDMAN LT: RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science (1987) 235:1056–1059.
  • WAGNER EK, BLOOM DC: Experimental investigation of herpes simplex virus latency. Clin. Microbial. Rev (1997) 10:419–443.
  • PALMER JA, BRANSTON RH, LILLEY CE et al.: Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J. Virol (2000) 74:5604–5618.
  • SMITH C, LACHMANN RH, EFSTATHIOU S: Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J. Gen. Virol (2000) 81:649–662.
  • GILES MS, SMITH PG, COLETTA PL, HALL KT, WHITEHOUSE A: The herpesvirus saimiri ORF 73 regulatory region provides long-term transgene expression in human carcinoma cell lines. Cancer Gene Ther. (2003) 10:49–56.
  • BALLESTAS ME, CHATIS PA, KAYE KM: Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science (1999) 284:641-644. Important article characterising the mechanism of episomal persistence in KSHV.
  • COTTER MA, ROBERTSON ES: The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology (1999) 264:254–264.
  • BALLESTAS ME, KAYE KM: Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J. Vira (2001) 75:3250–3258.
  • FEJER G, MEDVECZKY MM, HORVATH E et al.: The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts preferentially with the terminal repeats of the genome in vivo and this complex is sufficient for episomal DNA replication. J. Gen. Virol (2003) 84:1451–1462.
  • HALL KT, GILES MS, GOODWIN DJ et al.: Characterization of the herpesvirus saimiri ORF73 gene product.j Gen. Virol (2000) 81:2653–2658.
  • HALL KT, GILES MS, CALDERWOOD MA et al.: The herpesvirus saimiri open reading frame 73 gene product interacts with the cellular protein p32. Virol (2002) 76: 11612-11622.
  • CALDERWOOD MA, HALL KT, MATTHEWS D, WHITEHOUSE A: The herpesvirus saimiri ORF73 gene product interacts with host cell mitotic chromosomes and self associates via its C-terminus. J. Gen. Virol (2004) 85:147–153.
  • COLLINS CM, MEDVECZKY MM, LUND T, MEDVECZKY PG: The terminal repeats and latency-associated nuclear antigen of herpesvirus saimiri are essential for episomal persistence of the viral genome. J. Gen. Virol (2002) 83:2269–2278.
  • VERMA SC, ROBERTSON ES: ORF73 ofherpesvirus saimiri strain C488 tethers the viral genome to metaphase chromosomes and binds to cis-acting DNA sequences in the terminal repeats. J. Virol (2003) 77:12494–12506.
  • WHITE RE, CALDERWOOD MA, WHITEHOUSE A: Generation and precise modification of a herpesvirus saimiri bacterial artificial chromosome demonstrates that the terminal repeats are required for both virus production and episomal persistence. J. Gen. Virol (2003) 84:3393–3403.
  • WAGNER M, RUZSICS Z, KOSZINOWSKI UH: Herpesvirus genetics has come of age. Trends Microbial. (2002) 10:318–324.
  • ••Interesting review of the manipulation ofherpesviruses as BAC clones.
  • ZHOU FC, ZHANG YJ, DENG JH et al: Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J. Vim/. (2002) 76:6185–6196.
  • ADLER H, MESSERLE M, WAGNER M, KOSZINOWSKI UH: Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. Virol (2000) 74:6964–6974.
  • ADLER H, MESSERLE M, KOSZINOWSKI UH: Virus reconstituted from infectious bacterial artificial chromosome (BAC)-cloned murine gammaherpesvirus 68 acquires wild-type properties in vivo only after excision of BAC vector sequences. Virol (2001) 75:5692–5696.
  • LALIOTI M, HEATH J: A new method for generating point mutations in bacterial artificial chromosomes by homologous recombination in Escherichia coil. Nucleic Acids Res. (2001) 29:E14.
  • HORSBURGH BC, HUBINETTE MM, QIANG D, MACDONALD ML, TUFARO F: Allele replacement: an application that permits rapid manipulation of herpes simplex virus Type 1 genomes. Gene Ther. (1999) 6:922–930.
  • SAEKI Y, ICHIKAWA T, SAEKI A et al.: Herpes simplex virusType 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum. Gene The]: (1998) 9:2787–2794.
  • MESSERLE M, CRNKOVIC I, HAMMERSCHMIDT W, ZIEGLER H, KOSZINOWSKI UH: Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Nati Acad. Sri USA (1997) 94:14759–14763.
  • ••Article describing the first cloning of aherpesvirus as a BAC.
  • BORST E-M, HAHN G, KOSZINOWSKI UH, MESSERLE M: Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia colt. a new approach for construction of HCMV mutants. Virol. (1999) 73:8320–8329.
  • DELECLUSE HJ, HILSENDEGEN T, PICH D, ZEIDLER R, HAMMERSCHMIDT W: Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc. Nati Acad. Sri USA (1998) 95:8245–8250.
  • DELECLUSE HJ, KOST M, FEEDERLE R, WILSON L, HAMMERSCHMIDT W: Spontaneous activation of the lytic cycle in cells infected with a recombinant Kaposi's sarcoma- associated virus.Virol. (2001)75:2921–2928.
  • ALBRECHT JC, NICHOLAS J, CAMERON KR et al.: Herpesvirus saimiri has a gene specifying a homologue of the cellular membrane glycoprotein CD59. Virology (1992) 190:527–530.
  • ROTHER RP, ROLLINS SA, FODOR WL et al.: Inhibition of complement-mediated cytolysis by the terminal complement inhibitor of herpesvirus saimiri. Vim/. (1994) 68:730–737.
  • FERRARI S, GEDDES DM, ALTON EW: Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv. Drug Deity. Rev (2002) 54:1373–1393.
  • GRIESENBACH U, FERRARI S, GEDDES DM, ALTON EW: Gene therapy progress and prospects: cystic fibrosis. Gene Ther. (2002) 9:1344–1350.
  • TEICHLER ZALLEN D: US gene therapy in crisis. Trends Genet. (2000) 16:272–275.
  • KELLEHER ZT, FU H, LIVANOS E et al: Epstein-Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells. Nat. Biotechnol (1998) 16:762–768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.