71
Views
22
CrossRef citations to date
0
Altmetric
Review

Viral vectors for inducing CD8+ T cell responses

&
Pages 861-868 | Published online: 23 Feb 2005

Bibliography

  • SMITH CM, BELZ GT, WILSON NS et al.: Cutting edge: conventional CD8alpha(+) dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. j Immunol. (2003) 170(9):4437–4440.
  • ALLAN RS, SMITH CM, BELZ GT et al: Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science (2003) 301(5641):1925–1928.
  • •A conclusive demonstration that CD8a± DCs, rather than other DC subtypes, are responsible for priming of a CD8+ T cell response.
  • DEN HAAN JM, LEHAR SM, BE VAN MJ: CD8(+) but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. I Exp. Med. (2000) 192(12):1685–1696.
  • JUNG S, UNUTMAZ D, WONG P et al.: In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity (2002) 17(2):211.
  • NORBURY CC, MALIDE D, GIBBS JS, BENNINK JR, YEWDELL JW: Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat. Immunol. (2002) 3(3):265–271.
  • OCHSENBEIN AF, SIERRO S, ODERMATT B et al.: Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature (2001) 411(6841):1058–1064.
  • PORGADOR A, YEWDELL JW, DENG Y, BENNINK JR, GERMAIN RN: Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunih, (1997) 6(6):715–726.
  • RESTIFO NP, BACIK I, IRVINE KR et al.: Antigen processing in vivo and the elicitation of primary CTL responses. Immunol. (1995) 154(9):4414–4422.
  • WHERRY EJ, PUORRO KA, PORGADOR A, EISENLOHR LC: The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J. Immunol. (1999) 163(7):3735–3745.
  • WHERRY EJ, MCELHAUGH MJ, EISENLOHR LC: Generation of CD8(+) T cell memory in response to low, high, and excessive levels of epitope. Immunol. (2002) 168(9):4455–4461.
  • BRONTE V, CARROLL MW, GOLETZ TJ et al.: Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc. Natl. Acad. Sci. USA (1997) 94(7):3183–3188.
  • PRASAD SA, NORBURY CC, CHEN W, BENNINK JR, YEWDELL JW: Cutting edge: recombinant adenoviruses induce CD8 T cell responses to an inserted protein whose expression is limited to nonimmune cells. J. Immunol. (2001) 166(8):4809–4812.
  • BELZ GT, SMITH CM, EICHNER D et al.: Cutting edge: conventional CD8alpha(+) dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. (2004) 172(4):1996–2000.
  • CARBONE FR, HEATH WR: The role of dendritic cell subsets in immunity to viruses. Carr: Opin. Immunol. (2003) 15(4):416–420.
  • ARDAVIN C, MARTINEZ DEL HOYO G, MARTIN P et al: Origin and differentiation of dendritic cells. Trends Immunol. (2001) 22(12):691–700.
  • MARTINEZ DEL HOYO G, MARTIN P, ARIAS CE MARIN AR, ARDAVIN C: CD8alpha+ dendritic cells originate from the CD8alpha- dendritic cell subset by a maturation process involving CD8alpha, DEC-205, and CD24 up- regulation. Blood (2002) 99(3):999–1004.
  • WORGALL S, BUSCH A, RIVARA M et al.: Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses. J. Virol. (2004) 78(5):2572–2580.
  • •Demonstration that virus vectors can be engineered to preferentially infect DCs.
  • GARDNER JP, FROLOV I, PERRI S et al: Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein../. Virol. (2000) 74(24):11849–11857.
  • •Demonstration that virus vectors can be engineered to preferentially infect DCs.
  • CELLA M, SALIO M, SAKAKIBARA Y et al.: Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. I Exp. Med. (1999) 189(5):821–829.
  • MOLINIER-FRENKEL V, PREVOST-BLONDEL A, HONG SS et al.: The maturation of murine dendritic cells induced by human adenovirus is mediated by the fiber knob domain." Biol. Chem. (2003) 278(39):37175–37182.
  • OKADA N, SAITO T, MASUNAGA Y et al.: Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res. (2001) 61(21):7913–7919.
  • OKADA N, TSUKADA Y, NAKAGAWA S et al.: Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem. Biophys. Res. Commun. (2001) 282(1):173–179.
  • BHARDWAJ N: Interactions of viruses with dendritic cells: a double-edged sword. J. Exp. Med. (1997) 186(6):795–799.
  • SMILEY JR, ELGADI MM, SAFFRAN HA: Herpes simplex virus vhs protein. Methods Enzymol. (2001) 342:440–451.
  • MOSSMAN KL, MACGREGOR PF, ROZMUS JJ et al.: Herpes simplex virus triggers and then disarms a host antiviral response.Virol. (2001) 75(2):750–758.
  • SALIO M, CELLA M, SUTER M, LANZAVECCHIA A: Inhibition of dendritic cell maturation by herpes simplex virus. Eur. I Immunol. (1999) 29(10):3245–3253.
  • POLLARA G, SPEIDEL K, SAMADY L et al.: Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. I Infect. Dis. (2003) 187(2):165–178.
  • JENNE L, HAUSER C, ARRIGHI JF, SAURAT JH, HUGIN AW: Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther. (2000) 7(18):1575–1583.
  • ENGELMAYERJ, LARSSON M, SUBKLEWE M et al.: Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. I Immunol. (1999) 163(12):6762–6768.
  • GRETZ JE, NORBURY CC, ANDERSON AO, PROUDFOOT AE,
  • •• SHAW S: Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. Exp. Med. (2000) 192(10):1425–1440.
  • ITANO AA, MCSORLEY SJ, REINHARDT RL et al.: Distinct dendritic cell populations sequentially present a subcutaneous antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity (2003) 19(1):47–57.
  • SAMADY L, COSTIGLIOLA E, MACCORMAC L et al.: Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs-HSV vectors for dendritic cell-mediated immunotherapy. Virol. (2003) 77(6):3768–3776.
  • YEWDELL JW, HILL AB: Viral interference with antigen presentation. Nat. brununol. (2002) 3(11):1019–1025.
  • ••A comprehensive review of virus immuneevasion of the adaptive immune response.
  • ALCAMI A, KOSZINOWSKI UH: Viral mechanisms of immune evasion. Trends Microbial. (2000) 8(9):410–418.
  • HARTE MT, HAGA IR, MALONEY G et al.: The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. Exp. Med. (2003) 197(3):343–351.
  • BOWIE A, KISS-TOTH E, SYMONS JA et al.: A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc. Natl. Acad. Sci. USA (2000) 97(18):10162–10167.
  • CARROLL MW, OVERWIJK WW, CHAMBERLAIN RS et al.: Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model. Vaccine (1997) 15(4)387–394.
  • GOLD MC, MUNKS MW, WAGNER M et al.: The Murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. brununol. (2002) 169(1):359–365.
  • HOLTAPPELS R, PODLECH J, PAHL-SEIBERT MF et al.: Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. .1. Exp. Med. (2004) 199(1):131–136.
  • MEDZHITOV R, JANE WAY CA JR: Innate immunity: impact on the adaptive immune response. Carr. Opin. Inununol. (1997) 9(1):4–9.
  • BEUTLER B, HOEBE K, DUX, ULEVITCH RJ: How we detect microbes and respond to them: the Toll-like receptors and their transducers. Leukoc. Biol. (2003) 74(4):479–485.
  • AKIRA S: Toll receptor families: structure and function. Semin. Inununol. (2004) 16(1):1–2.
  • PEISER L, MUKHOPADHYAY S, GORDON S: Scavenger receptors in innate immunity. Carr. Opin. Irrununol. (2002) 14(1):123–128.
  • PEISER L, GORDON S: The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect. (2001) 3(2):149–159.
  • SCHWARZ K, STORNI T, MANOLOVA V et al.: Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur: .1. brununol. (2003) 33(01465–1470.
  • MAURER T, HEIT A, HOCHREIN H et al.: CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Ear: brununol. (2002) 32(8):2356–2364.
  • DATTA SK, REDECKE V, PRILLIMAN KR et al.: A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. .1. brununol. (2003) 170(8):4102–4110.
  • ALEXOPOULOU L, HOLT AC, MEDZHITOV R, FLAVELL RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature (2001) 413(6857):732–738.
  • LUND J, SATO A, AKIRA S, MEDZHITOV R, IWASAKI A: Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. (2003) 198(3):513–520.
  • HEIL F, HEMMI H, HOCHREIN H et al.: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (2004) 303(5663):1526–1529.
  • •Recent demonstration that TLR recognises ssRNA.
  • DIEBOLD SS, KAISHO T, HEMMI H, AKIRA S, REIS E SOUSA C: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science (2004) 303(5663):1529–1531.
  • •Recent demonstration that TLR recognises ssRNA.
  • LUND JM, ALEXOPOULOU L, SATO A et al.: Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA (2004) 101(15):5598–5603.
  • •Recent demonstration that TLR recognises ssRNA.
  • EDWARDS AD, DIEBOLD SS, SLACK EM et al.: Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur: I Irrununol. (2003) 33(0827–833.
  • CHAMAILLARD M, GIRARDIN SE, VIALA J, PHILPOTT DJ: Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbial. (2003) 5(9):581–592.
  • DER SD, LAU AS: Involvement of the double-stranded-RNA-dependent kinase PKR in interferon expression and interferon-mediated antiviral activity. Proc. Natl. Acad. Sci. USA (1995) 92(19):8841–8845.
  • WANG W, KRUG RIVI: The RNA-binding and effector domains of the viral NS1 protein are conserved to different extents among influenza A and B viruses. Virology (1996) 223(1):41–50.
  • LEITNER WW, HWANG LN, DEVEER MJ et al.: Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat. Med. (2003) 9(1):33–39.
  • HAYNES LM, MOORE DD, KURT-JONES EA et al.: Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus.Virol. (2001) 75(22):10730–10737.
  • BIEBACK K, LIEN E, KLAGGE IM et al.: Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. Virol. (2002) 76(17):8729–8736.
  • MANDELBOIM 0, LIEBERMAN N, LEV M et al.: Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature (2001) 409(6823):1055–1060.
  • SWEETSER MT, MORRISON L, BRACIALE VL, BRACIALE TJ: Recognition of pre-processed endogenous
  • •• antigen by class I but not class II MHC-restricted T cells. Nature (1989) 342:180–182.
  • PRINCIOTTA ME FINZI D, QIAN SB et al.: Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity (2003) 18(3):343–354.
  • TOWNSEND A, BASTIN J, GOULD K et al.: Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J. Exp. Med. (1988) 168(4):1211–1224.
  • SHEN L, ROCK KL: Cellular protein is the source of cross-priming antigen in vivo. Proc. Natl. Acad. Sci. USA (2004) 101(9):3035–3040.
  • DERBY MA, SNYDER JT, TSE R, ALEXANDER-MILLER MA, BERZOFSKY JA: An abrupt and concordant initiation of apoptosis: antigen- dependent death of CD8+ CTL. Ear: Immunol (2001) 31(10):2951–2959.
  • SUN JC, BEVAN MJ: Defective CD8 T cell memory following acute infection without CD4 T cell help. Science (2003) 300(5617):339–342.
  • YEWDELL JW, BENNINK JR: Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Ann. Rev. Immunol (1999) 17:51–88.
  • ••A comprehensive review of thephenomenon of immunodominance.
  • WALLACE ME, KEATING R, HEATH WR, CARBONE FR: The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. I. Vim/. (1999) 73(9):7619–7626.
  • WANG B, NORBURY CC, GREENWOOD R et al.: Multiple paths for activation of naive CD8+ T CD4-independent help. I Immunol (2001) 167(3):1283–1289.
  • HILL AV, REECE W, GOTHARD P et al.:DNA-based vaccines for malaria: a heterologous prime-boost immunisation strategy. Dev. Biol. (Basel) (2000) 104:171–179.
  • RAMSBURG E, ROSE NE MARX PA et al.: Highly effective control of an AIDS virus challenge in macaques by using vesicular stomatitis virus and modified vaccinia virus Ankara vaccine vectors in a single-boost protocol. J. Virol (2004) 78(8):3930–3940.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.