112
Views
21
CrossRef citations to date
0
Altmetric
Review

Antisense approaches in prostate cancer

&
Pages 927-936 | Published online: 23 Feb 2005

Bibliography

  • JEMAL A, MURRAY T, SAMUELS A, GHAFOOR A, WARD E, THUN MJ: Cancer statistics, 2003. CA Cancerj Clin. (2003) 53(1):5–26.
  • D'AMICO AV, WHITTINGTON R, MALKOWICZ SB et al: Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. "AMA (1998) 280(11):969–974.
  • TANNOCK IF, OSOBA D, STOCKLER MR et al.: Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. Clin. Oncol (1996) 14(6):1756–1764.
  • KANTOFF PW, HALABI S, CONAWAY M et al: Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of the cancer and leukemia group B 9182 study. J. Clin. Oncol (1999) 17(8):2506–2513.
  • BEER TM, PIERCE WC, LOWE BA et al: Phase II study of weekly docetaxel in symptomatic androgen-independent prostate cancer. Ann. Oncol (2001) 12(9):1273–1279.
  • PICUS J, SCHULTZ M: Docetaxel (Taxotere) as monotherapy in the treatment of hormone-refractory prostate cancer: preliminary results. Semin. Oncol. (Huntingt" (1999) 26(5 Suppl. 17):14–18.
  • LUO J, DUGGAN DJ, CHEN Yet al.: Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. (2001) 61(12):4683–4688.
  • PATERSON BM, ROBERTS BE, KUFF EL: Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc. Natl. Acad. Sci. USA (1977) 74:4370–4374.
  • ZAMECNIK PC, STEPHENSON ML: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA (1978) 75:280–284.
  • CROOKE ST: Molecular mechanisms of antisense drugs: RNase H. Antisense Nucleic Add Drug Dev. (1998) 8(2):133–134.
  • CARPENTIER AF, CHEN L, MALTONTI F, DELATTRE JY: Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res. (1999) 59(21):5429–5432.
  • JANSEN B, SCHLAGBAUER-WADL H, BROWN BD et al.: bc1-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat. Med. (1998) 4(2):232–234.
  • LEONETTI C, BIROCCIO A, BENASSI B et al.: Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivoin a human melanoma line. Cancer Gene Ther. (2001) 8(6):459–468.
  • MORRIS MJ, TONG WP, CORDON-CARDO C et al.: Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. (2002) 8(3):679–683.
  • ZELLWEGERT, MIYAKE H, COOPERS et al.: Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2'-0-(2-methoxy)ethyl chemistry. Pharmacol Exp. Ther. (2001) 298(3):934–940.
  • CHI KN, GLEAVE ME, KLASA R et al: A Phase I dose-finding study of combined treatment with an antisense Bc1-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin. Cancer Res. (2001) 7(12):3920–3927.
  • TOLCHER AW, REYNO L, VENNER PM et al: A randomized Phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. (2002) 8(8):2530–2535.
  • WATERS JS, WEBB A, CUNNINGHAM D et al.: Phase I clinical and pharmacokinetic study of bc1-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. Clin. Oncol (2000) 18(9):1812–1823.
  • HENRYS, STECKER K, BROOKS D, MONTEITH D, CONKLIN B, BENNETT CF: Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J. Phannacol Exp. Ther. (2000) 292(2):468–479.
  • BUBENDORF L, KOLMER M, KONONEN J et al.: Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J. Natl. Cancer Inst. (1999) 91(20):1758–1764.
  • MIYAKE H, TOLCHER A, GLEAVE ME: Antisense Bc1-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model. Cancer Res. (1999) 59(16):4030–4034.
  • MIYAKE H, NELSON C, RENNIE PS, GLEAVE ME: Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res. (2000) 60(1):170–176.
  • NICKERSON T, MIYAKE H, GLEAVE ME, POLLAK M: Castration-induced apoptosis of androgen-dependent Shionogi carcinoma is associated with increased expression of genes encoding insulin-like growth factor-binding proteins. Cancer Res. (1999) 59(14):3392–3395.
  • CRAFT N, SHOSTAK Y, CAREY M, SAWYERS CL: A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. (1999) 5(3):280–285.
  • GLEAVE M, TOLCHER A, MIYAKE H et al.: Progression to androgen independence is delayed by adjuvant treatment with antisense Bc1-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin. Cancer Res. (1999) 5(10):2891–2898.
  • GROSSFELD GD, OLUMI AF, CONNOLLY JA et al.: Locally recurrent prostate tumors following either radiation therapy or radical prostatectomy have changes in Ki-67 labeling index, p53 and bc1-2 immunoreactivity. Urol. (1998) 159(5):1437–1443.
  • CULIG Z, HOBISCH A, CRONAUER MV et al.: Regulation of prostatic growth and function by peptide growth factors. Prostate (1996) 28(6):392–405.
  • FELDMAN BJ, FELDMAN D: The development of androgen-independent prostate cancer. Nat. Rev. Cancer (2001) 1(1):34–45.
  • TSUJIMOTO Y, CROCE CM: Analysis of the structure, transcripts, and protein products of bc1-2, the gene involved in human follicular lymphoma. Proc. Nati Acad. Sci. USA (1986) 83(14):5214–5218.
  • REED JC: Bc1-2 and the regulation of programmed cell death. Cell Biol. (1994) 124(1-2):1–6.
  • MIYASHITA T, REED JC: Bc1-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood(1993) 81(1):151–157.
  • KYPRIANOU N, KING ED, BRADBURY D, RHEE JG: bc1-2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int. J. Cancer (1997) 70(3):341–348.
  • MCDONNELL TJ, NAVONE NM, TRONCOSO P et al.: Expression of bc1-2 oncoprotein and p53 protein accumulation in bone marrow metastases of androgen independent prostate cancer. Urol. (1997) 157(2):569–574.
  • COLOMBEL M, SYMMANS F, GIL S et al.: Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am. J. Pathol (1993) 143(2):390–400.
  • MCDONNELL TJ, TRONCOSO P, BRISBAY SM et al.: Expression of the protooncogene bc1-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. (1992) 52(24):6940–6944.
  • RAFFO AJ, PERLMAN H, CHEN MW, DAY ML, STREITMAN JS, BUTTYAN R: Overexpression of bc1-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. (1995) 55(19):4438–4445.
  • BUBENDORF L, SAUTER G, MOCH H et al.: Prognostic significance of Bc1-2 in clinically localized prostate cancer. Am. .1. Pathol (1996) 148(5):1557–1565.
  • SCHERR DS, VAUGHAN ED JR, WEI J et al.: BCL-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. .1. Urol. (1999) 162(1):12–16.
  • LEUNG S, MIYAKE H, ZELLWEGER T, TOLCHER A, GLEAVE ME: Synergistic chemosensitization and inhibition of progression to androgen independence by antisense Bc1-2 oligodeoxynucleotide and paclitaxel in the LNCaP prostate tumor model. Int. J. Cancer (2001) 91(6):846–850.
  • DE BONO JS, ROWINSKY EK, KUHN J et al.: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) trial of bc1-2 antisense (Genasense) and docetaxel (D) in hormone refractory prostate cancer. Proceedings of the American Society of Clinical Oncology Thirty-seventh Annual Meeting. San Francisco, USA (2001) 20:119a (Abstract 474).
  • CHI KN, MURRAY RN, GLEAVE ME et al.: A Phase II study of oblimersen sodium (G3139) and docetaxel (D) in patients (pts) with metastatic hormone-refractory prostate cancer (HRPC). Proceedings of the American Socieo, of Clinical Oncology Thirty-seventh Annual Meeting. San Francisco, USA (2003) 22:393 (Abstract 1580).
  • MIYAKE H, MONIA BP, GLEAVE ME: Inhibition of progression to androgen-independence by combined adjuvant treatment with antisense BCL-XL and antisense Bc1-2 oligonucleotides plus taxol after castration in the Shionogi tumor model. hat. J. Cancer (2000) 86(6):855–862.
  • STEINBERG J, OYASU R, LANG Set al.: Intracellular levels of SGP-2 (Clusterin) correlate with tumor grade in prostate cancer. Clin. Cancer Res. (1997) 3(10):1707–1711.
  • CERVELLERA M, RASCHELLA G, SANTILLI G et al: Direct transactivation of the anti-apoptotic gene apolipoprotein J (clusterin) by B-MYB. J. Biol. Chem. (2000) 275(28):21055–21060.
  • REDONDO M, VILLAR E, TORRES-MUNOZ J, TELLEZ T, MORELL M, PETITO CK: Overexpression of clusterin in human breast carcinoma. Am. J. Pathol (2000) 157(2):393–399.
  • WELLMANN A, THIEBLEMONT C, PITTALUGA S et al.: Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood (2000) 96(2):398–404.
  • MIYAKE H, GLEAVE M, KAMIDONO S, HARA I: Overexpression of clusterin in transitional cell carcinoma of the bladder is related to disease progression and recurrence. Urology (2002) 59(1):150–154.
  • PARCZYK K, PILARSKY C, RACHEL U, KOCH-BRANDT C: Gp80 (clusterin; TRPM-2) mRNA level is enhanced in human renal clear cell carcinomas. J. Cancer Res. Clin. Oncol (1994) 120(3):186–188.
  • CALERO M, ROSTAGNO A, MATSUBARA E, ZLOKOVIC B, FRANGIONE B, GHISO J: Apolipoprotein J (clusterin) and Alzheimer's disease. Microsc. Res. Tech. (2000) 50(4):305–315.
  • ROSENBERG ME, SILKENSEN J: Clusterin and the kidney. Exp. Nephrol (1995) 3(1):9–14.
  • MONTPETIT ML, LAWLESS KR, TENNISWOOD M: Androgen-repressed messages in the rat ventral prostate. Prostate (1986) 8(1):25–36.
  • KYPRIANOU N, ENGLISH HF, ISAACS JT: Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res. (1990) 50(12):3748–3753.
  • JULY LV, AKBARI M, ZELLWEGER T, JONES EC, GOLDENBERG SL, GLEAVE ME: Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate (2002) 50(3):179–188.
  • KOCH-BRANDT C, MORGANS C: Clusterin: a role in cell survival in the face of apoptosis? Frog. Ma Subcell Biol. (1996) 16:130–149.
  • WILSON MR, EASTERBROOK-SMITH SB: Clusterin is a secreted mammalian chaperone. Trends Biochem. Sci. (2000) 25(3):95–98.
  • MICHEL D, CHATELAIN G, NORTH S, BRUN G: Stress-induced transcription of the clusterin/apoJ gene. Biochem. J. (1997) 328(1):45–50.
  • HUMPHREYS DT, CARVER JA, EASTERBROOK-SMITH SB, WILSON MR: Clusterin has chaperone-like activity similar to that of small heat shock proteins. Biol. Chem. (1999) 274(11):6875–6881.
  • SENSIBAR JA, SUTKOWSKI DM, RAFFO A et al.: Prevention of cell death induced by tumor necrosis factor alpha in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res. (1995) 55(11):2431–2437.
  • ZELLWEGER T, CHI K, MIYAKE H et al.: Enhanced radiation sensitivity in prostate cancer by inhibition of the cell survival protein clusterin. Clin. Cancer Res. (2002) 8(10):3276–3284.
  • MIYAKE H, CHI KN, GLEAVE ME: Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo. Clin. Cancer Res. (2000) 6(5):1655–1663.
  • DEVERAUX QL, ROY N, STENNICKE HR et al.: IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. (1998) 17(8):2215–2223.
  • ROY N, DEVERAUX QL, TAKAHASHI R, SALVESEN GS, REED JC: The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. (1997) 16(23):6914–6925.
  • DEVERAUX QL, TAKAHASHI R, SALVESEN GS, REED JC: X-linked IAP is a direct inhibitor of cell-death proteases. Nature (1997) 388(6639):300–304.
  • TAMM I, WANG Y, SAUSVILLE E et al.: IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Box, caspases, and anticancer drugs. Cancer Res. (1998) 58(23):5315–5320.
  • LEVKAU B, GARTON KJ, FERRI N et al.: xIAP induces cell-cycle arrest and activates nuclear factor-kappaB: new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ. Res. (2001) 88(3)282–290.
  • SILKE J, HAWKINS CJ, EKERT PG et al: The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J. Cell Biol. (2002) 157(1):115–124.
  • SALVESEN GS, DUCKETT CS: IAP proteins: blocking the road to death's door. Nat. Rev. Ma Cell Biol. (2002) 3(6):401–410.
  • KRAJEWSKA M, KRAJEWSKI S, BANARES S et al.: Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin. Cancer Res. (2003) 9(13):4914–4925.
  • PATEL BK, CARRASCO RA, STAMM NB et al: Antisense inhibition of survivin expression as a cancer therapeutic. Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. Boston, USA (2003) Abstract B62.
  • HU Y, CHERTON-HORVAT G, DRAGOWSKA V et al.: Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in viva Clin. Cancer Res. (2003) 9(7):2826–2836.
  • LEITE KR, FRANCO MF, SROUGI M et al.: Abnormal expression of MDM2 in prostate carcinoma. Mod. Pathol (2001) 14(5):428–436.
  • STAPLETON AM, TIMME TL, GOUSSE AE et al.: Primary human prostate cancer cells harboring p53 mutations are clonally expanded in metastases. Clin. Cancer Res. (1997) 3(8):1389–1397.
  • AGUS DB, CORDON-CARDO C, FOX W et al.: Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J. Nati Cancer Inst. (1999) 91(21):1869–1876.
  • WANG H, YU D, AGRAWAL S, ZHANG R: Experimental therapy of human prostate cancer by inhibiting MDM2 expression with novel mixed-backbone antisense oligonucleotides: in vitro and in vivo activities and mechanisms. Prostate (2003) 54(3):194–205.
  • ZHANG Z, LI M, WANG H, AGRAWAL S, ZHANG R: Antisense therapy targeting MDM2 oncogene in prostate cancer: effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc. Nati Acad. Sci. USA (2003) 100(20):11636–11641.
  • SIGALAS I, CALVERT AH, ANDERSON JJ, NEAL DE, LUNEC J: Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat. Med. (1996) 2(8):912–917.
  • JONES SN, HANCOCK AR, VOGEL H, DONEHOWER LA, BRADLEY A: Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc. Nati Acad. Sci. USA (1998) 95(26):15608–15612.
  • GU L, FINDLEY HW, ZHOU M: MDM2 induces NF-kappaB/p65 expression transcriptionally through Spl-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood (2002) 99(9):3367–3375.
  • FU H, XIA K, PALLAS DC et al.: Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science (1994) 266(5182):126–129. ao. KOLCH W, HEIDECKER G, KOCHS G et al.: Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature (1993) 364(6434):249–252.
  • NEWTON AC: Regulation of protein kinase C. Curt: Opin. Cell Biol. (1997) 9(2):161–167.
  • LIU B, MAHER RJ, HANNUN YA, PORTER AT, HONN KV: (S)-HETE enhancement of prostate tumor cell invasion: selective role of PKC alpha. J. Nati Cancer Inst. (1994) 86(15):1145–1151.
  • O'BRIAN CA: Protein kinase C-alpha: a novel target for the therapy of androgen-independent prostate cancer? Oncol Rep. (1998) 5(2):305–309.
  • NEMUNAITIS J, HOLMLUND JT, KRAYNAK M et al: Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J. Gin. Oncol (1999) 17(11):3586–3595.
  • YUEN AR, HALSEY J, FISHER GA et al.: Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin. Cancer Res. (1999) 5(11):3357–3363.
  • CUNNINGHAM CC, HOLMLUND JT, SCHILLER JH et al.: A Phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Gin. Cancer Res. (2000) 6(5):1626–1631.
  • JONES JI, CLEMMONS DR: Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev (1995) 16(1):3–34.
  • NICKERSON T, POLLAK M, HUYNH H: Castration-induced apoptosis in the rat ventral prostate is associated with increased expression of genes encoding insulin-like growth factor binding proteins 2,3,4 and 5. Endocrinology (1998) 139(2):807–810.
  • FIGUEROA JA, DE RAAD S, TADLOCK L, SPEIGHTS VO, RINEHART JJ: Differential expression of insulin-like growth factor binding proteins in high versus low Gleason score prostate cancer. Urol. (1998) 159(4):1379–1383.
  • MIYAKE H, NELSON C, RENNIE PS, GLEAVE ME: Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3'-kinase pathway. Endocrinology (2000) 141(6):2257–2265.
  • MIYAKE H, POLLAK M, GLEAVE ME: Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. Cancer Res. (2000) 60(11):3058–3064.
  • KIYAMA S, MORRISON K, ZELLWEGER T et al: Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors. Cancer Res. (2003) 63 (13):3575–3584.
  • SCHER HI, KELLY WK: Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. Clin. Oncol (1993) 11(8):1566–1572.
  • EDER IE, CULIG Z, RAMONER R et al: Inhibition of LNCaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Then (2000) 7(7):997–1007.
  • EDER IE, HOFFMANN J, ROGATSCH H et al.: Inhibition of LNCaP prostate tumor growth in vivoby an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Then (2002) 9(2):117–125.
  • HAMY F, BRONDANI V, SPOERRI R, RIGO S, STAMM C, KLIMKAIT T: Specific block of androgen receptor activity by antisense oligonucleotides. Prostate Cancer Prostatic Dis. (2003) 6(1):27–33.
  • LYNCH TJ, RAJU R, LIND M et al.: Randomized Phase III trial of chemotherapy and antisense oligonucleotide LY900003 (ISIS 3521) in patients with advanced NSCLC: initial report. Proceedings of the American Society of Clinical Oncology Thirty-seventh Annual Meeting. San Francisco, USA (2003)22:623 (Abstract 2504).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.