90
Views
17
CrossRef citations to date
0
Altmetric
Review

Stem cells as biological heart pacemakers

Pages 1531-1537 | Published online: 30 Nov 2005

Bibliography

  • SCHRAM G, POUR RIER M, MELNYK P, NATTEL S: Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res. (2002) 90:939–950.
  • KUSUMOTO FM, GOLDSCHLAGERN: Cardiac pacing. N Engl. J. Med. (1996) 334:89–97.
  • LECLERCQ C, HARE JM: Ventricular resynchronization: current state of the art. Circulation (2004) 109:296–299.
  • ROSEN MR, BRINK PR, COHEN IS, ROBINSON RB: Genes, stern cells and biological pacemakers. Cardiovasc. Res. (2004) 64:12–23.
  • ROSEN MR: 15th annual Gordon K. Moe Lecture. Biological pacemaking: in our lifetime? Heart Rhythm (2005) 2:418–428.
  • ISNER JM: Myocardial gene therapy. Nature (2002) 415:234–239.
  • HAJJAR RJ, DEL MONTE F, MATSUI T, ROSENZWEIG A: Prospects for gene therapy for heart failure. Circ. Res. (2000) 86:616–621.
  • REINLIB L, FIELD L: Cell transplantationas future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation (2000) 101:E182–E187.
  • TOMASELLI GF, DONAHUE JK: Somatic gene transfer and cardiac arrhythmias: problems and prospects. Cardiovasc. Electrophysiol. (2003) 14:547–550.
  • GEPSTEIN L, FELD Y, YANKELSON L: Somatic gene and cell therapy strategies for the treatment of cardiac arrhythmias. Am. J. Physiol Heart Circ. Physiol. (2004) 286:H815–H22.
  • EDELBERG JM, AIRD WC, ROSENBERG RD: Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J. Clin. Invest. (1998) 101:337–343.
  • EDELBERG JM, HUANG DT, JOSEPHSON ME, ROSENBERG RD: Molecular enhancement of porcine cardiac chronotropy. Heart (2001) 86:559–562.
  • MIAKE J, MARBAN E, NUSS HB: Biological pacemaker created by gene transfer. Nature (2002) 419:132–133.
  • KUBO Y, BALDWIN TJ, JAN YN, JAN LY: Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature (1993) 362:127–133.
  • LUDWIG A. ZONG X, JEGLITSCH M, HOFMANN F, BIEL M: A family of hyperpolarization-activated mammalian cation channels. Nature (1998) 393:587–591.
  • QU J, PLOTNIKOV AN, DANILO P JRet al: Expression and function of a biological pacemaker in canine heart. Circulation (2003) 107:1106–1109.
  • PLOTNIKOV AN, SOSUNOV FA, QU J et al.: Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation (2004) 109:506–512.
  • MIAKE J, MARBAN E, NUSS HB: Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J. Clin. Invest. (2003) 111:1529–1536.
  • MULLER-EHMSEN J, WHITTAKER P, KLONER RA et al.: Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. MoL Cell. Cardiol (2002) 34:107–116.
  • VALIUNAS V DORONIN S, VALIUNIENE Let al.: Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J. Physiol (2004) 555:617–626.
  • POTAPOVA I, PLOTNIKOV A, LU Z et al.: Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ. Res. (2004) 94:952–959.
  • FELD Y, MELAMED-FRANK M, KEHAT I et al.: Electrophysiological modulation of cardiomyocytic tissue by transfected fibroblasts expressing potassium channels: a novel strategy to manipulate excitability. Circulation (2002) 105:522–529.
  • GEPSTEIN L: Derivation and potential applications of human embryonic stem cells. Circ. Res. (2002) 91:866–876.
  • EVANS MJ, KAUFMAN MH: Establishment in culture of pluripotential cells from mouse embryos. Nature (1981) 292:154–156.
  • MARTIN G: Isolation of a pluripotent cellline from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA (1981) 78:7635.
  • THOMSON JA, ITSKOVITZ-ELDOR J, SHAPIRO SS et al.: Embryonic stem cell lines derived from human blastocysts. Science (1998) 282:1145–1147.
  • REUBINOFF BE, PERA MF, FONG CY, TROUNSON A, BONGSO A: Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol (2000) 18:399–404.
  • KEHAT I, KENYAGIN-KARSENTI D, SNIR M et al.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. (2001) 108:407–414.
  • HE JQ, MAY, LEE Y, THOMSON JA, KAMP TJ: Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. (2003) 93:32–39.
  • MUMMERY C, WARD-VAN OOSTWAARD D, DOEVENDANS P et al.: Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation (2003) 107:2733–2740.
  • XU C, POLICES, RAO N, CARPENTER MK: Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. (2002) 91:501–508.
  • PASSIER R, OOSTWAARD DW, SNAPPER J et al.: Increased carcliomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells (2005) 23:772–780.
  • SATIN J, KEHAT I, CASPI O et al.: Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. j PhysioL (2004) 559:479–496.
  • REPPEL M, BOETTINGER C, HESCHELER J: Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes. Cell. Physiol Biochem. (2004) 14:187–196.
  • KEHAT I, GEPSTEIN A, SPIRA A, ITSKOVITZ-ELDOR J, GEPSTEIN L: High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ. Res. (2002) 91:659–661.
  • KEHAT I, KHIMOVICH L, CASPI O et al.: Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. (2004) 22:1282–1289.
  • XUE T, CHO HC, AKAR FG et al.: Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation (2005) 111:11–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.