221
Views
141
CrossRef citations to date
0
Altmetric
Review

Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases

, , , , &
Pages 1571-1584 | Published online: 30 Nov 2005

Bibliography

  • BIANCO P, ROBEY PG: Stern cells in tissue engineering. Nature (2001) 414(6859):118–121.
  • VOLLWEILER JL, ZIELSKE SP, REESE JS, GERSON SL: Haematopoietic stern cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant. (2003) 32(1):1–7.
  • REZAI N, PODOR TJ, MCMANUS BM: Bone marrow cells in the repair and modulation of heart and blood vessels: emerging opportunities in native and engineered tissue and biomechanical materials. Arti f Organs (2004) 28(2):142–151.
  • VAN DAMME A, VANDEN DRIESSCHE T, COLLEN D, CHUAH MK: Bone marrow stromal cells as targets for gene therapy. Curr. Gene Ther. (2002) 2(2):195–209.
  • BALLAS CB, ZIELSKE SP, GERSON SL: Adult bone marrow stem cells for cell and gene therapies: implications for greater use. J. Cell. Biochem. Suppl (2002) 38:20–28.
  • MAUNEY JR, VOLLOCH KAPLAN DL: Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng. (2005) 11(5-61:787–802.
  • HAMADA H, KOBUNE M, NAKAMURA K et al.: Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci. (2005) 96(3):149–156.
  • PROCKOP DJ: Further proof of the plasticity of adult stem cells and their role in tissue repair. J. Cell Biol. (2003) 160(6):807–809.
  • JORGENSEN C, DJOUAD F, APPARAILLY F, NOEL D: Engineering mesenchymal stem cells for immunotherapy. Gene Ther. (2003) 10(10):928–931.
  • BARRY FP, MURPHY JM, ENGLISH K, MAHON BP: Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev. (2005) 14(3):252–265.
  • DEANS RJ, MOSELEY AB: Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol (2000) 28(8):875–884.
  • CHUAH MK, VAN DAMME A. ZWINNEN H et al.: Long-term persistence of human bone marrow stromal cells transduced with Factor VIII-retroviral vectors and transient production of therapeutic levels of human Factor VIII in nonmyeloablated immunodeficient mice. Hum. Gene Ther. (2000) 11(5):729–738.
  • SCHWARZ EJ, ALEXANDER GM, PROCKOP DJ, AZIZI SA: Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of Parkinson's disease. Hum. Gene Ther. (1999) 10(15):2539–2549.
  • MARX JC, ALLAY JA, PERSONS DA et al.: High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells. Hum. Gene Ther. (1999) 10(7):1163–1173.
  • ALLAY JA, DENNIS JE, HAYNESWORTH SE et al.: LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum. Gene Ther. (1997) 8(12):1417–1427.
  • CHUAH MK, BREMS H, VANSLEMBROUCK V COLLEN D, VANDENDRIESSCHE T: Bone marrow stromal cells as targets for gene therapy of hemophilia A. Hum. Gene Ther. (1998) 9(3):353–365.
  • CHIANG GG, RUBIN HL, CHERINGTON Vet al.: Bone marrow stromal cell-mediated gene therapy for hemophilia A: in vitro expression of human Factor VIII with high biological activity requires the inclusion of the proteolytic site at amino acid 1648. Hum. Gene Ther. (1999) 10(1):61–76.
  • JAALOUK DE, ELIOPOULOS N, COUTURE C, MADER S, GALIPEAU J: Glucocorticoid-inducible retrovector for regulated transgene expression in genetically engineered bone marrow stromal cells [In Process Citation]. Hum. Gene Ther. (2000) 11(13):1837–1849.
  • ZHANG XY, LA RUSSA VF, BAO L et al.: Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. MoL Ther. (2002) 5(5 Pt 1):555–565.
  • TOTSUGAWA T, KOBAYASHI N, OKITSU T et al.: Lentiviral transfer of the LacZ gene into human endothelial cells and human bone marrow mesenchymal stem cells. Cell Transplant. (2002) 11(5):481–488.
  • LEE CI, KOHN DB, EKERT JE, TARANTAL AF: Morphological analysis and lentiviral transduction of fetal monkey bone marrow-derived mesenchymal stem cells. Mot Ther. (2004) 9(1):112–123.
  • ZHANG XY, LA RUSSA VF, REISER J: Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J. Virol. (2004) 78(3):1219–1229.
  • DAVIS BM, HUMEAU L, SLEPUSHKIN Vet al.: ABC transporter inhibitors that are substrates enhance lentiviral vector transduction into primitive haematopoietic progenitor cells. Blood (2004) 104(2):364–373.
  • CHAN J, O& DONOGHUE K, DE LA FUENTE J et al.: Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells (2005) 23(1):93–102.
  • REISER J, HARMISON G, KLUEPFEL-STAHL S, BRADY RO, KARLSSON S, SCHUBERT M: Transduction of nondividing cells using pseudotyped defective high- titer HIV Type 1 particles. Proc. Natl Acad. Sci. USA (1996) 93(20:15266–15271.
  • MOCHIZUKI H, SCHWARTZ JP, TANAKA K, BRADY RO, REISER J: High-titer human immunodeficiency virus Type 1-based vector systems for gene delivery into nondividing cells. J. Virol (1998) 72(11):8873–8883.
  • CONGET PA, MINGUELL JJ: Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J. Cell. Physiol. (1999) 181(1):67–73.
  • ANJOS-AFONSO F, SIAPATI EK, BONNET D: In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J. Cell Sci. (2004) 117(Pt 23):5655–5664.
  • CONGET PA, MINGUELL JJ: Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp. Hematol (2000) 28(4):382–390.
  • HUNG SC, LU CY, SHYUE SK, LIU HC, HO LL: Lineage differentiation-associated loss of adenoviral susceptibility and Coxsackie-adenovirus receptor expression in human mesenchymal stem cells. Stem Cells (2004) 22(7):1321–1329.
  • OLMSTED-DAVIS EA, GUGALA Z, GANNON FH et al: Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum. Gene The,: (2002) 13(10:1337–1347.
  • TSUDA H, WADA T, ITO Yet al: Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. MoL Ther. (2003) 7(3):354–365.
  • ITO H, GOATER JJ, TIYAPATANAPUTI P, RUBERY PT, O'KEEFE RJ, SCHWARZ EM: Light-activated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells. Gene Ther. (2004) 11(1):34–41.
  • KUMAR S, MAHENDRA G, NAGY TR, PONNAZHAGAN S: Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum. Gene Ther. (2004) 15(12):1197–1206.
  • FROLO VA-JONESEA, ENSSER A, STEVENSON AJ, KINSEY SE, MEREDITH DM: Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri-based vectors. Hematother. Stem Cell Res. (2000) 9(4):573–581.
  • SONG L, CHAU L, SAKAMOTO Y et ell.:Electric field-induced molecular vibration for noninvasive, high-efficiency DNA transfection. Mol. Ther. (2004) 9(4):607–616.
  • PEISTER A, MELLAD JA, WANG M, TUCKER HA, PROCKOP DJ: Stable transfection of MSCs by electroporation. Gene Ther. (2004) 11(2):224–228.
  • HOELTERS J, CICCARELLA M, DRECHSEL M et al.: Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J. Gene Med. (2005) 7(6):718–728.
  • VANDERBYL S, MACDONALD GN, SIDHU S et al.: Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells (2004) 22(3):324–333.
  • DING L, LU S, BATCHU R, III RS, MUNSHI N: Bone marrow stromal cells as a vehicle for gene transfer. Gene The,: (1999) 6(9):1611–1616.
  • HURWITZ DR, KIRCHGESSER M, MERRILL Wet al.: Systemic delivery of human growth hormone or human Factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum. Gene Ther. (1997) 8(2):137–156.
  • GORDON EM, SKOTZKO M, KUNDU RK et al.: Capture and expansion of bone marrow-derived mesenchymal progenitor cells with a transforming growth factor-betal-von Willebrand's factor fusion protein for retrovirus-mediated delivery of coagulation Factor IX. Hum. Gene Ther. (1997) 8(11):1385–1394.
  • CHERINGTON V, CHIANG GG, MCGRATH CA et al.: Retroviral vector-modified bone marrow stromal cells secrete biologically active Factor IX in vitro and transiently deliver therapeutic levels of human Factor IX to the plasma of dogs after reinfusion. Hum. Gene Ther. (1998) 9(101397–1407.
  • LEE K, MAJUMDAR MK, BUYANER D et al.: Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. MoL Ther. (2001) 3(6):857–866.
  • NOLTA JA, HANLEY MB, KOHN DB: Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood (1994) 83(10):3041–3051.
  • BOLOTIN E, SMOGORZEWSKA M, SMITH S, WIDMER M, -WEINBERG K: Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood (1996) 88(5):1887–1894.
  • BARTHOLOMEW A, PATIL S, MACKAY A et al.: Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum. Gene Ther. (2001) 12(12):1527–1541.
  • ELIOPOULOS N, LEJEUNE L, MARTINEAU D, GALIPEAU J: Human-compatible collagen matrix for prolonged and reversible systemic delivery of erythropoietin in mice from gene-modified marrow stromal cells. MoL Ther. (2004) 10(4):741–748.
  • MATZNER U, HARZER K, LEARISH RD, BARRANGER JA, GIESELMANN V: Long-term expression and transfer of arylsulfatase A into brain of arylsulfatase A-deficient mice transplanted with bone marrow expressing the arylsulfatase A cDNA from a retroviral vector. Gene Ther. (2000) 7(14):1250–1257.
  • MATZNER U, SCHESTAG F, HARTMANN D et al.: Bone marrow stem cell gene therapy of arylsulfatase A-deficient mice, using an arylsulfatase A mutant that is hypersecreted from retrovirally transduced donor-type cells. Hum. Gene Ther. (2001) 12(9):1021–1033.
  • SCHWARZ EJ, REGER RL, ALEXANDER GM et al: Rat marrow stromal cells rapidly transduced with a self-inactivating retrovirus synthesize L-DOPA in vitro. Gene Ther. (2001) 8(16):1214–1223.
  • BAXTER MA, WYNN RF, DEAKIN JA et al.: Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis Type I. Blood (2002) 99(5):1857–1859.
  • MARTINO S, CAVALIERI C, EMILIANI C et al.: Restoration of the GM2 ganglioside metabolism in bone marrow-derived stromal cells from Tay-Sachs disease animal model. Neurochem. Res. (2002) 27(7-8):793–800.
  • GYSIN R, WERGEDAL JE, SHENG MH et al.: Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther. (2002) 9(15):991–999.
  • MICHIELS F, VAN ES H, VAN ROMPAEY Let al.: Arrayed adenoviral expression libraries for functional screening. Nat. Biotechnol. (2002) 20(11):1154–1157.
  • BROUARD N, CHAPEL A. THIERRY D, CHARBORD P, PEAULT B: Transplantation of gene-modified human bone marrow stromal cells into mouse-human bone chimeras. J. Hematother. Stem Cell Res. (2000) 9(2):175–181.
  • DEVINE SM, COBBS C, JENNINGS M, BARTHOLOMEW A, HOFFMAN R: Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood (2003) 101(8):2999–3001.
  • HILL JM, DICK AJ, RAMAN VK et ell.: Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation (2003) 108(8):1009–1014.
  • DICK AJ, GUTTMAN MA, RAIVIAN VK et al.: Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation (2003) 108(23):2899–2904.
  • DEZAWA M, HOSHINO M, IDE C: Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons. Expert Opin. Biol. Ther. (2005) 5(4):427–435.
  • JIN HK, CARTER JE, HUNTLEY GW, SCHUCHMAN EH: Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. Clin. Invest. (2002) 109(9):1183–1191.
  • JIN HK, SCHUCHMAN EH: Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann-Pick disease. Mol Ther. (2003) 8(6):876–885.
  • SAKURAI K, IIZUKA S, SHEN JS et al.: Brain transplantation of genetically modified bone marrow stromal cells corrects CNS pathology and cognitive function in MPS VII mice. Gene Ther. (2004) 11(19):1475–1481.
  • KUROZUMI K, NAKAMURA K, TAMIYA T et al.: BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mot Ther. (2004) 9(2):189–197.
  • VAN DAMME A, CHUAH MK, DELEACCIO F et al.: Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats. Haemophilia (2003) 9(1):94–103.
  • KREBSBACH PH, ZHANG K, MALIK AK, KURACHI K: Bone marrow stromal cells as a genetic platformfor systemic delivery of therapeutic proteins in vivo: human Factor IX model. J. Gene Med. (2003) 5(1):11–17.
  • PITTENGER MF, MARTIN BJ: Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. (2004) 95(1):9–20.
  • SHIM WS, JIANG S, WONG P et al.: Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem. Biophys. Res. Commun. (2004) 324(2):481–488.
  • KAWADA H, FUJITA J, KINJO K et ed: Nonhaematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood (2004) 104(12):3581–3587.
  • TANG YL, ZHAO Q, ZHANG YC et ell.: Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regzd. Pept. (2004) 117(1):3–10.
  • FUKUDA K: Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes. C. R. Biol. (2002) 325(10):1027–1038.
  • HATTAN N, KAWAGUCHI H, ANDO K et al.: Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc. Res. (2005) 65(2):334–344.
  • SOUKIASIAN HJ, CZER LS, AVITAL I et al.: A novel sub-population of bone marrow-derived myocardial stem cells: potential autologous cell therapy in myocardial infarction. J. Heart Lung Transplant. (2004) 23(7):873–880.
  • CHENG F, ZOU P, YANG H, YU Z, ZHONG Z: Induced differentiation of human cord blood mesenchymal stem/ progenitor cells into cardiomyocyte-like cells in vitro. J. Huazhong Univ. Sci. Technolog-. Med. Sci. (2003) 23(2):154–157.
  • XU W, ZHANG X, QIAN H et ell.: Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp. Biol. Med. (Maywood) (2004) 229(7):623–631.
  • RANGAPPA S, ENTWISTLE JW, WECHSLER AS, KRESH JY: Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J. Thorac. Cardiovasc. Surg-. (2003) 126(1):124–132.
  • TOMA C, PITTENGER MF, CAHILL KS, BYRNE BJ, KESSLER PD: Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation (2002) 105(1):93–98.
  • NAGAYA N, FUJII T, IWASE T et al: Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am. J. Physiol. Heart Circ. Physiol. (2004) 287(6):H2670–H2676.
  • KOIKE N, FUKUMURA D, GRALLA O et al.: Tissue engineering: creation of long-lasting blood vessels. Nature (2004) 428(6979):138–139.
  • POTAPOVA I, PLOTNIKOV A, LU Z et al.: Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ. Res. (2004) 94(7):952–959.
  • OSWALD J, BOXBERGER S, JORGENSEN B et al.: Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells (2004) 22(3):377–384.
  • SILVA GV, LITOVSKY S, ASSAD JA et al.: Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation (2005) 111(2):150–156.
  • DENG W, BIVALACQUA TJ, CHATTERGOON NN et al: Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells. Am. J. Physiol. Cell Physiol (2003) 285(5):C1322–C1329.
  • LOU J, TU Y, LUDWIG FJ, ZHANG J, MANSKE PR: Effect of bone morphogenetic protein-12 gene transfer on mesenchymal progenitor cells. Clin. Orthop. (1999) (369):333–339.
  • GUGALA Z, OLMSTED-DAVIS EA, GANNON FH, LINDSEY RW, DAVIS AR: Osteoinduction by ex vivo adenovirus-mediated BMP2 delivery is independent of cell type. Gene Ther. (2003) 10(10:1289–1296.
  • BLUM JS, BARRY Mk MIKOS AG, JANSEN JA: In vivo evaluation of gene therapy vectors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model. Hum. Gene Ther. (2003) 14(18):1689–1701.
  • CHANG SC, CHUANG HL, CHEN YR et al.: Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration. Gene Ther. (2003) 10(24):2013–2019.
  • ZHANG XS, LINKHART TA, CHEN ST et al.: Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J. Gene Med. (2004) 6(1):4–15.
  • CHAMBERLAIN JR, SCHWARZE U, WANG PR et al.: Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science (2004) 303 (5661): 1198–1201.
  • JIA W, ZHOU Q: Viral vectors for cancergene therapy: viral dissemination and tumor targeting. Curr. Gene Ther. (2005) 5(1):133–142.
  • STUDENY M, MARINI FC, DEMBINSKI JL et al.: Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Nail Cancer Inst. (2004) 96(21):1593–1603.
  • STAGG J, LEJEUNE L, PAQUIN A. GALIPEAU J: Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther. (2004) 15(6):597–608.
  • NAKAMURA K, ITO Y, KAWANO Y et al.: Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. (2004) 11(14):1155–1164.
  • PEREBOEVA L, KOMAROVA S, MIKHEEVA G, KRASNYKH V, CURIEL DT: Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells (2003) 21(4):389–404.
  • NIETHAMMER AG, WODRICH H, LOEFFLER M et al.: Multidrug resistance-1 (MDR-1): a new target for T cell-based immunotherapy. FASEB J. (2005) 19(1):158–159.
  • ZIMMERMANN S, VOSS M, KAISER S et al.: Lack of telomerase activity in human mesenchymal stem cells. Leukemia (2003) 17(6):1146–1149.
  • SIMONSEN JL, ROSADA C, SERAKINCI N et al.: Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol (2002) 20(0:592–596.
  • SHI S, GRONTHOS S, CHEN S et aL: Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat. Biotechnol (2002) 20(6):587–591.
  • KOBUNE M, KAWANO Y, ITO Yet aL: Telomerized human multipotent mesenchymal cells can differentiate into haematopoietic and cobblestone area-supporting cells. Exp. Hematol. (2003) 31(8):715–722.
  • SERAKINCI N, GULDBERG P, BURNS JS et al.: Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene (2004) 23(29):5095–5098.
  • GRONTHOS S, CHEN S, WANG CY, ROBEY PG, SHI S: Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J. Bone Miner. Res. (2003) 18(4):716–722.
  • MANGI AA, NOISEUX N, KONG D et al.: Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. (2003) 9(9):1195–1201.
  • TSUCHIYA H, KITOH H, SUGIURA F, ISHIGURO N: Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. (2003) 301(2):338–343.
  • DEZAWA M, KANNO H, HOSHINO M et al.: Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. Clin. Invest. (2004) 113(12):1701–1710.
  • ROMBOUTS WJ, PLOEMACHER RE: Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia (2003) 17(1):160–170.
  • QUIRICI N, SOLIGO D, BOSSOLASCO P et al.: Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol (2002) 30(7):783–791.
  • DESCHASEAUX F, GINDRAUX F, SAADI R et al.: Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med,low phenotype. Br. J. Haematol (2003) 122(3):506–517.
  • SIMMONS PJ, TOROK-STORB B: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood (1991) 78(1):55–62.
  • JIANG Y, JAHAGIRDAR BN, REINHARDT RL et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature (2002) 418(6893):41–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.