95
Views
12
CrossRef citations to date
0
Altmetric
Review

Gene therapy for Parkinson’s disease using recombinant adeno-associated viral vectors

, , &
Pages 663-671 | Published online: 24 Nov 2005

Bibliography

  • HEALY DG, ABOU-SLEIMAN PM, WOOD NW: PINK, PANK, or PARK? A clinicians' guide to familial parkinsonism. Lancet Neurol (2004) 3(11):652–662.
  • SHEN J: Protein kinases linked to the pathogenesis of Parkinson's disease. Neuron (2004) 44(4):575–577.
  • VILA M, PRZEDBORSKI S: Genetic clues to the pathogenesis of Parkinson's disease. Nat. Med. (2004) 10(Suppl.):S58–S62.
  • KISH SJ, SHANNAK K, HORNYKIEWICZ O: Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engi J. Med. (1988) 318(14):876–880.
  • JENNER P: Factors influencing the onset and persistence of dyskinesia in MPTP-treated primates. Ann. Neurol (2000) 47(4 Suppl. 1):S90–S104.
  • LANGSTON JW, QUIK M, PETZINGER G, JAKOWEC M, DI MONTE DA: Investigating levodopa-induced dyskinesias in the parkinsonian primate. Ann. Neurol (2000) 47(4 Suppl. 1):S79–S89.
  • CAREY RJ, PINHEIRO-CARRERA M, DM H, TOMAZ C, HUSTON JP: L-DOPA and psychosis: evidence for L-DOPA-induced increases in prefrontal cortex dopamine and in serum corticosterone. Biol. Psychiatry (1995) 38(10):669–676.
  • DUB, WU P, BOLDT-HOULE DM, TERWILLIGER EF: Efficient transduction of human neurons with an adeno-associated virus vector. Gene Ther. (1996) 3(3):254–261.
  • KAPLIF1 MG, LEONE P, SAMULSKI RJ et al: Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat. Genet. (1994) 8(2):148–154.
  • •First report of rAAV vector-mediated gene delivery in an animal model of PD.
  • LEFF SE, SPRATT SK, SNYDER RO, MANDEL RJ: Long-term restoration of striatal L-aromatic amino acid decarboxylase activity using recombinant adeno-associated viral vector gene transfer in a rodent model of Parkinson's disease. Neuroscience (1999) 92(1):185–196.
  • •One of a series of reports describing DA replacement using rAAV vectors.
  • SHEN Y, MURAMATSU SI, IKEGUCHI K et al.: Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum. Gene Ther. (2000) 11(11):1509–1519.
  • •One of a series of reports describing DA replacement using rAAV vectors.
  • BERNS KI, BERGOIN M, BLOOM M et al.: Family Parvoviridae. In: Virus Taxonomy. Classification and Nomenclature of Viruses. Murphy FA (Ed.), Springer-Verlag, New York, USA (1995):169–178.
  • BANTEL-SCHAAL U, DELIUS H, SCHMIDT R, ZUR HAUSEN H: Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. j Virol (1999) 73(2):939–947.
  • CHIORINI JA, KIM F, YANG L, KOTIN RM: Cloning and characterization of adeno-associated virus type 5. J. Virol (1999) 73(2):1309–1319.
  • CHIORINI JA, YANG L, LIU Y, SAFER B, KOTIN RM: Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. Virol (1997) 71(9):6823–6833.
  • HANDA A, MURAMATSU S, QIU J, MIZUKAMI H, BROWN KE: Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J. Gen. Virol (2000) 81(Pt 8):2077–2084.
  • MURAMATSU S, MIZUKAMI H, YOUNG NS, BROWN KE: Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology (1996) 221(1):208–217.
  • RUTLEDGE EA, HALBERT CL, RUSSELL DW: Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. Virol (1998) 72(1):309–319.
  • SRIVASTAVA A, LUSBY EW, BERNS KI: Nucleotide sequence and organization of the adeno-associated virus 2 genome. Virol (1983) 45(2):555–564.
  • XIAO W, CHIRMULE N, BERTA SC et al: Gene therapy vectors based on adeno-associated virus type 1.1 Virol (1999) 73(5):3994–4003.
  • GAO G, VANDENBERGHE LH, ALVIRA MR et al.: Glades of adeno-associated viruses are widely disseminated in human tissues. J. Virol (2004) 78(12):6381–6388.
  • •Describes novel primate AAVs.
  • BURGER C, GORBATYUK OS, VELARDO MJ et al.: Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1,2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. MoL Ther. (2004) 10(2):302–317.
  • DAVIDSON BL, CHIORINI JA: Recombinant adeno-associated viral vector types 4 and 5. Preparation and application for CNS gene transfer. Methods Mol Med. (2003) 76:269–285.
  • NAKAI H, FUESS S, STORM TA et ed.: Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice./ Virol (2005) 79(1):214–224.
  • TENENBAUM L, CHTARTO A, LEHTONEN E et al.: Recombinant AAV-mediated gene delivery to the central nervous system. J. Gene Med. (2004) 6\(Suppl. 1):5212–5222.
  • WANG C, WANG CM, CLARK KR, SFERRA TJ: Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Ther. (2003) 10(17):1528–1534.
  • MILLER DG, RUTLEDGE EA, RUSSELL DW: Chromosomal effects of adeno-associated virus vector integration. Nat. Genet. (2002) 30(2):147–148.
  • NAKAI H, MONTINI E, FUESS S et al: AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat. Genet. (2003) 34(3):297–302.
  • SCHNEPP BC, CLARK KR, KLEMANSKI DL, PACAK CA, JOHNSON PR: Genetic fate of recombinant adeno-associated virus vector genomes in muscle./ Virol (2003) 77(0:3495–3504.
  • MCCARTY DM, YOUNG SM JR, SAMULSKI RJ: Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. (2004) 38:819–845.
  • MONAHAN PE, JOOSS K, SANDS MS: Safety of adeno-associated virus gene therapy vectors: a current evaluation. Expert Opin. Drug Saf (2002) 1(1):79–91.
  • •A review on the safety aspects of rAAV vectors. Expert Op/n. Biol. Ther (2005) 5(5)
  • TENENBAUM L, LEHTONEN E, MONAHAN PE: Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr. Gene Ther. (2003) 3(0:545–565.
  • •A review on the safety aspects of rAAV vectors.
  • PEDEN CS, BURGER C, MUZYCZKA N, MANDEL RJ: Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J. Virol (2004) 78(12):6344–6359.
  • SANFTNER LM, SUZUKI BM, DOROUDCHI MM et al.: Striatal delivery of rAAV-hAADC to rats with preexisting immunity to AAV. Md. Ther. (2004) 9(3):403–409.
  • BANKIEWICZ KS, EBERLING JL, KOHUTNICKA M et al.: Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol (2000) 164(1):2–14.
  • ••rAAV vector-mediated AADC gene transferin a primate model of PD.
  • FAN DS, OGAWA M, FUJIMOTO KI et al.: Behavioral recovery in 6-hydroxydopamine-lesioned rats by cotransduction of striatum with tyrosine hydroxylase and aromatic L- amino acid decarboxylase genes using two separate adeno-associated virus vectors. Hum. Gene Ther. (1998) 9(17):2527–2535.
  • MANDEL RJ, RENDAHL KG, SPRATT SK et al.: Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase Tin a rat model of Parkinson's disease. J. Neurosci. (1998) 18(11):4271–4284.
  • •One of a series of reports describing DA replacement using rAAV vectors.
  • MURAMATSU S, FUJIMOTO K, IKEGUCHI K et al.: Behavioral recovery in a primate model of Parkinson's disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum. Gene Ther. (2002) 13(3):345–354.
  • ••Demonstrates behavioural improvement ina primate model of PD.
  • SANCHEZ-PERNAUTE R, HARVEY-WHITE J, CUNNINGHAM J, BANKIEWICZ KS: Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxylase into the striatum of 6-0HDA-lesioned rats. Mo/. Ther. (2001) 4(4):324–330.
  • •One of a series of reports describing DA replacement using rAAV vectors.
  • ICHINOSE H, OHYE T, FUJITA K et al.:Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substantia nigra in Parkinson's disease and schizophrenia. J. Neural Transm. Park. Dis. Dement. Sect. (1994) 8(1-2):149–158.
  • KADDIS FG, CLARKSON ED, WEBER MJ et al.: Intrastriatal grafting of Cos cells stably expressing human aromatic L-amino acid decarboxylase: neurochemical effects. j Neurochem. (1997) 68(4):1520–1526.
  • ZHONG XH, HAYCOCK JW, SHANNAK K et al.: Striatal dihydroxyphenylalanine decarboxylase and tyrosine hydroxylase protein in idiopathic Parkinson's disease and dominantly inherited olivopontocerebellar atrophy. Mov. Disord. (1995) 10(1):10–17.
  • NAKAMURA K, AHMED M, BARR E, LEIDEN JM, KANG UJ: The localization and functional contribution of striatal aromatic L-amino acid decarboxylase to L-3,4-dihydroxyphenylalanine decarboxylation in rodent parkinsonian models. Cell Transplant. (2000) 9(5):567–576.
  • TRESEDER SA, JACKSON M, JENNER P: The effects of central aromatic amino acid DOPA decarboxylase inhibition on the motor actions of L-DOPA and dopamine agonists in MPTP-treated primates. Br. J. Pharmacol (2000) 129(7):1355–1364.
  • NAGATSU T, ICHINOSE H: Molecular biology of catecholamine-related enzymes in relation to Parkinson's disease. Cell. MoL Neurobiol (1999) 19(1):57–66.
  • CORTI O, SANCHEZ-CAPELO A, COLIN P et al.: Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson's disease. Proc. Natl. Acad. Sci. USA (1999) 96(21):12120–12125.
  • NAGATSU T, HORIKOSHI T, SAWADA M et al.: Biosynthesis of tetrahydrobiopterin in parkinsonian human brain. Adv. Neurol (1987) 45:223–226.
  • ICHINOSE H, OHYE T, TAKAHASHI E et al.: Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat. Genet. (1994) 8(3):236–242.
  • HOSHIGA M, HATAKEYAMA K, WATANABE M, SHIMADA M, KAGAIVIIYAMA H: Autoradiographic distribution of [14C]tetrahydrobiopterin and its developmental change in mice. Pharmacol Exp. Ther. (1993) 267(2):971–978.
  • DEUMENS R, BLOKLAND A, PRICKAERTS J: Modeling Parkinson's disease in rats: an evaluation of 6-0HDA lesions of the nigrostriatal pathway. Exp. NeuroL (2002) 175(2):303–317.
  • KANG UJ, LEE WY, CHANG JW: Gene therapy for Parkinson's disease: determining the genes necessary for optimal dopamine replacement in rat models. Hum. Cell (2001) 14(1):39–48.
  • WACHTEL SR, BENCSICS C, KANG UJ: Role of aromatic L-amino acid decarboxylase for dopamine replacement by genetically modified fibroblasts in a rat model of Parkinson's disease./ Neurochem. (1997) 69(5):2055–2063.
  • CARLSSON T, WINKLER C, BURGER C et al.: Reversal of dyskinesias in an animal model of Parkinson's disease by continuous L-DOPA delivery using rAAV vectors. Brain (2005) 128(Pt 3):559–569.
  • NYHOLM D, NILSSON REMAHL AT, DIZDAR N et al.: Duodenal levodopa infusion monotherapy versus oral polypharmacy in advanced Parkinson's disease. Neurology (2005) 64(2):216–223.
  • OLANOW CW, WATTS RL, KOLLER WC: An algorithm (decision tree) for the management of Parkinson's disease (2001): treatment guidelines. Neurology (2001) 56(11 Suppl. 5):S1–588.
  • KIRIK D, GEORGIEVSKA B, BURGER C et al.: Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc. Natl Acad. Sci. USA (2002) 99(7):4708–4713.
  • •One of a series of reports describing GDNF gene transfer using rAAV vectors in a rat model of PD.
  • HURELBRINK CB, BARKER RA: The potential of GDNF as a treatment for Parkinson's disease. Exp. NeuroL (2004) 185(1):1–6.
  • MOCHIZUKI H, HAYAKAWA H, MIGITA M et al.: An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease. Proc. Natl. Acad. Sci. USA (2001) 98(19):10918–10923.
  • BOHN MC: Parkinson's disease: a neurodegenerative disease particularly amenable to gene therapy. Md. Ther. (2000) 1(6):494–496.
  • UN LF, DOHERTY DH, LILE JD, BEKTESH S, COLLINS F: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science (1993) 260(5111):1130–1132.
  • KORDOWER JH, PALFI S, CHEN EY et al.: Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann. Neurol. (1999) 46(3):419–424.
  • GILL SS, PATEL NK, HOTTON GR et al.: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson's disease. Nat. Med. (2003) 9(5):589–595.
  • KIRIK D, ROSENBLAD C, BJORKLUND A. MANDEL RJ: Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J. Neurosci. (2000) 20(12):4686–4700.
  • MANDEL RJ, SNYDER RO, LEFF SE: Recombinant adeno-associated viral vector-mediated glial cell line-derived neurotrophic factor gene transfer protects nigral dopamine neurons after onset of progressive degeneration in a rat model of Parkinson's disease. Exp. Neurol. (1999) 160(1):205–214.
  • MANDEL RJ, SPRATT SK, SNYDER RO, LEFF SE: Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc. Nail. Acad. Sci. USA (1997) 94(25):14083–14088.
  • MCGRATH J, LINTZ E, HOFFER BJ et al.: Adeno-associated viral delivery of GDNF promotes recovery of dopaminergic phenotype following a unilateral 6-hydroxydopamine lesion. Cell Transplant. (2002) 11(3):215–227.
  • WANG L, MURAMATSU S, LU Yet al.: Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson's disease. Gene Ther. (2002) 9(6):381–389.
  • BILANG-BLEUEL A, REVAH F, COLIN P et al: Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson's disease. Proc. Nail. Acad. Sci. USA (1997) 94(16):8818–8823.
  • CHOI-LUNDBERG DL, UN Q, CHANG YN et al: Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science (1997) 275(5301):838–841.
  • CHOI-LUNDBERG DL, UN Q, SCHALLERT T et al: Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp. Neurol. (1998) 154(2):261–275.
  • CONNOR B, KOZLOWSKI DA, SCHALLERT T et al: Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther. (1999) 6(12):1936–1951.
  • CONNOR B, KOZLOWSKI DA, UNNERSTALL JR et al.: Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects dopaminergic terminals from degeneration. Exp. Neurol. (2001) 169(1):83–95.
  • KOZLOWSKI DA, CONNOR B, TILLERSON JL, SCHALLERT T, BOHN MC: Delivery of a GDNF gene into the substantia nigra after a progressive 6- OHDA lesion maintains functional nigrostriatal connections. Exp. Neurol (2000) 166(1):1–15.
  • AZZOUZ M, RALPH S, WONG LF et al: Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport (2004) 15(6):985–990.
  • KORDOWER JH, EMBORG ME, BLOCH J et al: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science (2000) 290(5492):767–773. GDNF gene transfer using a lentiviral vector in a primate model of PD.
  • GRONDIN R, GASH DM: Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson's disease. J. Neurol (1998) 245(11 Suppl. 3):P35–P42.
  • WALTON KM: GDNF: a novel factor with therapeutic potential for neurodegenerative disorders. Mol NeurobioL (1999) 19(1):43–59.
  • ESLAMBOLI A, GEORGIEVSKA B, RIDLEY RM et al: Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson's disease. J. Neurosci. (2005) 25(4):769–777.
  • BROOKS DJ: Morphological and functional imaging studies on the diagnosis and progression of Parkinson's disease. Neurol. (2000) 247\(Suppl. 2):1111–1118.
  • HAMANI C, SAINT-CYR JA, FRASER J, KAPLITT M, LOZANO AM: The subthalamic nucleus in the context of movement disorders. Brain (2004) 127(Pt 1):4–20.
  • LEVY R, LANG AE, DOSTROVSKY JO et al: Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain (2001) 124(Pt 10):2105–2118.
  • -WICHMANN T, KLIEM MA, DELONG MR: Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp. Neurol (2001) 167(2):410–424.
  • DURING MJ, KAPLITT MG, STERN MB, EIDELBERG D: Subthalamic GAD gene transfer in Parkinson's disease patients who are candidates for deep brain stimulation. Hum. Gene Ther. (2001) 12(12):1589–1591.
  • LUO J, KAPLITT MG, FITZSIMONS HL et al: Subthalamic GAD gene therapy in a Parkinson's disease rat model. Science (2002) 298(5592):425–429. GAD gene transfer into the STN using rAAV vectors.
  • DOSTROVSKY J, BERGMAN H: Oscillatory activity in the basal ganglia-relationship to normal physiology and pathophysiology. Brain (2004) 127(Pt 4):721–722.
  • BROOKS DJ: PET studies on the function of dopamine in health and Parkinson's disease. Ann. IVY Acad. Sri. (2003) 991:22–35.
  • •A review on PET in PD.
  • DOUDET DJ: PET studies in the MPTP model of Parkinson's disease. Adv. NeuroL (2001) 86:187–195.
  • •A review on PET in a primate model of PD.
  • RAVINA B, EIDELBERG D, AHLSKOG JE et aL: The role of radiotracer imaging in Parkinson's disease. Neurology (2005) 64(2):208–215.
  • DEJESUS OT: Positron-labeled DOPA analogs to image dopamine terminals. Drug Dev. Res. (2003) (59):249–260.
  • EBERLING JL, CUNNINGHAM J, PIVIROTTO P et aL: In vivo PET imaging of gene expression in Parkinsonian monkeys. MoL Ther. (2003) 8(6):873–875.
  • PATE BD, KAWAMATA T, YAMADA T et aL: Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann. NeuroL (1993) 34(3):331–338.
  • SNOW BJ, TOOYAMA I, MCGEER EG et aL: Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann. NeuroL (1993) 34(3):324–330.
  • TORSTENSON R, TEDROFF J, HARTVIG P, FASTH KJ, LANGSTROM B: A comparison of 11C-labeled L-DOPA and L-fluorodopa as positron emission tomography tracers for the presynaptic dopaminergic system. Cereb. Blood Flow Metab. (1999) 19(10):1142–1149.
  • TSUKADA H, LINDNER KJ, HARTVIG P et aL: Effect of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin and infusion of L-tyrosine on the in vivo L-[beta-11C] DOPA disposition in the monkey brain. Brain Res. (1996) 713(1-2):92–98.
  • HAYASE N, TOMIYOSHI K, WATANABE K et al.: Positron emission tomography with 4418F]fluoro-L-m-tyrosine in MPTP-induced hemiparkinsonian monkeys. Ann. Nud Med. (1995) 9(3):119–123.
  • TSUKADA H, HARADA N, NISHIYAMA S, OHBA H, KAKIUCHI T: Cholinergic neuronal modulation alters dopamine D2 receptor availability in vivo by regulating receptor affinity induced by facilitated synaptic dopamine turnover: positron emission tomography studies with microdialysis in the conscious monkey brain. J. Neurosci. (2000) 20(107067–7073.
  • TSUKADA H, HARADA N, NISHIYAMA S et al.: Ketamine decreased striatal [(11)C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: multiparametric PET studies combined with microdialysis analysis. Synapse (2000) 37(2):95–103.
  • TSUKADA H, NISHIYAMA S, KAKIUCHI T et aL: Is synaptic dopamine concentration the exclusive factor which alters the in vivo binding of [11C]raclopride? PET studies combined with microdialysis in conscious monkeys. Brain Res. (1999) 841(1-2):160–169.
  • BREIER A, SU TP, SAUNDERS R et al.:Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. NatL Acad. Sci. USA (1997) 94(6):2569–2574.
  • BROOKS DJ: Functional imaging studies on dopamine and motor control. J. Neural Transm. (2001) 108(11):1283–1298.
  • NORDSTROM JL: The antiprogestin-dependent GeneSwitch system for regulated gene therapy. Steroids (2003) 68(10-13):1085–1094.
  • RIVERA VM, GAO GP, GRANT RL et al.: Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood (2005) 105(4):1424–1430.
  • AGHA-MOHAIVIMADI S, O'MALLEY M, ETEMAD A et aL: Second-generation tetracycline-regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. J. Gene Med. (2004) 6(7):817–828.
  • AHMED BY, CHAKRAVARTHY S, EGGERS R et al.: Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci. (2004) 5(1):4.
  • CAPLEN NJ: Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther. (2004) 11(16):1241–1248.
  • WADHWA R, KAUL SC, MIYAGISHI M, TAIRA K: Vectors for RNA interference. Curr. Opin. MoL Ther. (2004) 6(4):367–372.
  • WINKLER WC, NAHVI A, ROTH A. COLLINS JA, BREAKER RR: Control of gene expression by a natural metabolite-responsive ribozyme. Nature (2004) 428(6980):281–286.
  • YEN L, SVENDSEN J, LEE JS et al.: Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature (2004) 431(7007):471–476.
  • MURAMATSU S, WANG L, IKEGUCHI K et aL: Adeno-associated viral vectors for Parkinson's disease. Int. Rev. NeurobioL (2003) 55:205–222.
  • GUIGONI C, LI Q, AUBERT I et al.: Involvement of sensorimotor, limbic, and associative basal ganglia domains in L-3,4-dihydroxyphenylalanine-induced dyskinesia. j Neurosci. (2005) 25(8):2102–2107.
  • LO BIANCO C, SCHNEIDER BL, BAUER M et al.: Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease. Proc. Natl. Acad. Sci. USA (2004) 101(50):17510–17515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.