211
Views
27
CrossRef citations to date
0
Altmetric
Review

AAV-mediated gene transfer for retinal diseases

, , &
Pages 1279-1294 | Published online: 22 Nov 2006

Bibliography

  • BERNS KI: Paroviridae: The Viruses and Their Replication. Fields BN (Ed.), Lippincot-Raven, Philadelphia, New York, USA (1996):1017-1042.
  • GAO GP, ALVIRA MR, WANG L et al.: Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. USA (2002) 99(18):11854-11859.
  • GAO G, VANDENBERGHE LH, ALVIRA MR et al.: Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. (2004) 78(12):6381-6388.
  • KOTIN RM, LINDEN RM, BERNS KI: Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. (1992) 11(13):5071-5078.
  • LINDEN RM, WARD P, GIRAUD C, WINOCOUR E, BERNS KI: Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA (1996) 93(21):11288-11294.
  • CHEN CL, JENSEN RL, SCHNEPP BC et al.: Molecular characterization of adeno-associated viruses infecting children. J. Virol. (2005) 79(23):14781-14792.
  • SCHNEPP BC, JENSEN RL, CHEN CL, JOHNSON PR, CLARK KR: Characterization of adeno-associated virus genomes isolated from human tissues. J. Virol. (2005) 79(23):14793-14803.
  • RABINOWITZ JE, SAMULSKI J: Adeno-associated virus expression systems for gene transfer. Curr. Opin. Biotechnol. (1998) 9(5):470-475.
  • ZOLOTUKHIN S: Production of recombinant adeno-associated virus vectors. Hum. Gene Ther. (2005) 16(5):551-557.
  • MCCARTY DM, YOUNG SM JR, SAMULSKI RJ: Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. (2004) 38:819-845.
  • AURICCHIO A: Pseudotyped AAV vectors for constitutive and regulated gene expression in the eye. Vision Res. (2003) 43(8):913-918.
  • GAO G, VANDENBERGHE LH, WILSON JM: New recombinant serotypes of AAV vectors. Curr. Gene Ther. (2005) 5(3):285-297.
  • CHAO H, LIU Y, RABINOWITZ J et al.: Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol. Ther. (2000) 2(6):619-623.
  • AURICCHIO A, KOBINGER G, ANAND V et al.: Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum. Mol. Genet. (2001) 10(26):3075-3081.
  • SUMMERFORD C, SAMULSKI RJ: Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus Type 2 virions. J. Virol. (1998) 72(2):1438-1445.
  • QING K, MAH C, HANSEN J et al.: Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. (1999) 5(1):71-77.
  • SUMMERFORD C, BARTLETT JS, SAMULSKI RJ: AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat. Med. (1999) 5(1):78-82.
  • KALUDOV N, BROWN KE, WALTERS RW, ZABNER J, CHIORINI JA: Adeno-associated virus serotype 4(AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J. Virol. (2001) 75(15):6884-6893.
  • DI PASQUALE G, DAVIDSON BL, STEIN CS et al.: Identification of PDGFR as a receptor for AAV-5 transduction. Nat. Med. (2003) 9(10):1306-1312.
  • ZABNER J, SEILER M, WALTERS R et al.: Adeno-associated virus Type 5(AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J. Virol. (2000) 74(8):3852-3858.
  • AURICCHIO A, O’CONNOR E, WEINER D et al.: Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J. Clin. Invest. (2002) 110(4):499-504.
  • ZAISS AK, LIU Q, BOWEN GP et al.: Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J. Virol. (2002) 76(9):4580-4590.
  • ZHANG Y, CHIRMULE N, GAO G, WILSON J: CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J. Virol. (2000) 74(17):8003-8010.
  • BESSIS N, GARCIACOZAR FJ, BOISSIER MC: Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. (2004) 11(Suppl. 1):S10-S17.
  • ZAISS AK, MURUVE DA: Immune responses to adeno-associated virus vectors. Curr. Gene Ther. (2005) 5(3):323-331.
  • RIVIERE C, DANOS O, DOUAR AM: Long-term expression and repeated administration of AAV Type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther. (2006) 13(17):1300-1308.
  • MANNO CS, PIERCE GF, ARRUDA VR et al.: Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. (2006) 12(3):342-347.
  • MURPHY SL, SABATINO D, MINGOZZI F, EDMONSON S, HIGH K: Cellular immunity to adeno-associated virus capsid attenuates transgene expression in the liver. Mol. Ther. (2006) 13(Suppl. 1):s31.
  • XIAO W, CHIRMULE N, BERTA SC et al.: Gene therapy vectors based on adeno-associated virus Type 1. J. Virol. (1999) 73(5):3994-4003.
  • CHIRMULE N, XIAO W, TRUNEH A et al.: Humoral immunity to adeno-associated virus Type 2 vectors following administration to murine and nonhuman primate muscle. J. Virol. (2000) 74(5):2420-2425.
  • GRIEGER JC, SAMULSKI RJ: Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J. Virol. (2005) 79(15):9933-9944.
  • DUAN D, FISHER KJ, BURDA JF, ENGELHARDT JF: Structural and functional heterogeneity of integrated recombinant AAV genomes. Virus Res. (1997) 48(1):41-56.
  • NAKAI H, STORM TA, KAY MA: Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat. Biotechnol. (2000) 18(5):527-532.
  • YAN Z, ZHANG Y, DUAN D, ENGELHARDT JF: Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl. Acad. Sci. USA (2000) 97(12):6716-6721.
  • DUAN D, YUE Y, ENGELHARDT JF: Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol. Ther. (2001) 4(4):383-391.
  • GHOSH A, YUE Y, DUAN D: Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J. Gene Med. (2006) 8(3):298-305.
  • REICH SJ, AURICCHIO A, HILDINGER M et al.: Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum. Gene Ther. (2003) 14(1):37-44.
  • GHOSH A, YUE Y, DUAN D: A novel hybrid system efficiently expands AAv packaging capacity. Mol. Ther. (2006) 13(Suppl. 1):S286.
  • CLARKE G, HEON E, MCINNES RR: Recent advances in the molecular basis of inherited photoreceptor degeneration. Clin. Genet. (2000) 57(5):313-329.
  • SURACE EM, AURICCHIO A: Adeno-associated viral vectors for retinal gene transfer. Prog. Retin. Eye Res. (2003) 22(6):705-719.
  • DINCULESCU A, GLUSHAKOVA L, MIN SH, HAUSWIRTH WW: Adeno-associated virus-vectored gene therapy for retinal disease. Hum. Gene Ther. (2005) 16(6):649-663.
  • HASKINS ME, JEZYK PF, DESNICK RJ et al.: Animal models of mucopolysaccharidosis. Prog. Clin. Biol. Res. (1982) 94:177-201.
  • LIN CT, GOULD DJ, PETERSEN-JONEST SM, SARGAN DR: Canine inherited retinal degenerations: update on molecular genetic research and its clinical application. J. Small Anim. Pract. (2002) 43(10):426-432.
  • CHANG B, HAWES NL, HURD RE et al.: Retinal degeneration mutants in the mouse. Vision Res. (2002) 42(4):517-525.
  • FLANNERY JG, ZOLOTUKHIN S, VAQUERO MI et al.: Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA (1997) 94(13):6916-6921.
  • BENNETT J, MAGUIRE AM, CIDECIYAN AV et al.: Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc. Natl. Acad. Sci. USA (1999) 96(17):9920-9925.
  • RABINOWITZ JE, ROLLING F, LI C et al.: Cross-packaging of a single adeno-associated virus (AAV) Type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. (2002) 76(2):791-801.
  • YANG GS, SCHMIDT M, YAN Z et al.: Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J. Virol. (2002) 76(15):7651-7660.
  • ACLAND GM, AGUIRRE GD, RAY J et al.: Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. (2001) 28(1):92-95.
  • HO TT, MAGUIRE AM, AGUIRRE GD et al.: Phenotypic rescue after adeno-associated virus-mediated delivery of 4-sulfatase to the retinal pigment epithelium of feline mucopolysaccharidosis VI. J. Gene Med. (2002) 4(6):613-621.
  • LOTERY AJ, YANG GS, MULLINS RF et al.: Adeno-associated virus Type 5: transduction efficiency and cell-type specificity in the primate retina. Hum. Gene Ther. (2003) 14(17):1663-1671.
  • ACLAND GM, AGUIRRE GD, BENNETT J et al.: Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol. Ther. (2005) 12(6):1072-1082.
  • WEBER M, RABINOWITZ J, PROVOST N et al.: Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol. Ther. (2003) 7(6):774-781.
  • ALI RR, REICHEL MB, DE ALWIS M et al.: Adeno-associated virus gene transfer to mouse retina. Hum. Gene Ther. (1998) 9(1):81-86.
  • SURACE EM, AURICCHIO A, REICH SJ et al.: Delivery of adeno-associated virus vectors to the fetal retina: impact of viral capsid proteins on retinal neuronal progenitor transduction. J. Virol. (2003) 77(14):7957-7963.
  • GLUSHAKOVA LG, TIMMERS AM, ISSA TM et al.: Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo? Mol. Vis. (2006) 12:298-309.
  • CLACKSON T: Regulated gene expression systems. Gene Ther. (2000) 7(2):120-125.
  • RIVERA VM, CLACKSON T, NATESAN S et al.: A humanized system for pharmacologic control of gene expression. Nat. Med. (1996) 2(9):1028-1032.
  • YE X, RIVERA VM, ZOLTICK P et al.: Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science (1999) 283(5398):88-91.
  • AURICCHIO A, RIVERA V, CLACKSON T et al.: Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol. Ther. (2002) 6(2):238.
  • LEBHERZ C, AURICCHIO A, MAGUIRE AM et al.: Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates. Hum. Gene Ther. (2005) 16(2):178-186.
  • MCGEE SANFTNER LH, RENDAHL KG, QUIROZ D et al.: Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol. Ther. (2001) 3(5 Pt 1):688-696.
  • SMITH JR, VERWAERDE C, ROLLING F et al.: Tetracycline-inducible viral interleukin-10 intraocular gene transfer, using adeno-associated virus in experimental autoimmune uveoretinitis. Hum. Gene Ther. (2005) 16(9):1037-1046.
  • STIEGER K, LE MEUR G, LASNE F et al.: Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol. Ther. (2006) 13(5):967-975.
  • FOLLIOT S, BRIOT D, CONRATH H et al.: Sustained tetracycline-regulated transgene expression in vivo in rat retinal ganglion cells using a single Type 2 adeno-associated viral vector. J. Gene Med. (2003) 5(6):493-501.
  • CREMERS FP, VAN DEN HURK JA, DEN HOLLANDER AI: Molecular genetics of Leber congenital amaurosis. Hum. Mol. Genet. (2002) 11(10):1169-1176.
  • FAZZI E, SIGNORINI SG, SCELSA B, BOVA SM, LANZI G: Leber’s congenital amaurosis: an update. Eur. J. Paediatr. Neurol. (2003) 7(1):13-22.
  • MARLHENS F, BAREIL C, GRIFFOIN JM et al.: Mutations in RPE65 cause Leber’s congenital amaurosis. Nat. Genet. (1997) 17(2):139-141.
  • MORIMURA H, FISHMAN GA, GROVER SA et al.: Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc. Natl. Acad. Sci. USA (1998) 95(6):3088-3093.
  • JIN M, LI S, MOGHRABI WN, SUN H, TRAVIS GH: Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell (2005) 122(3):449-459.
  • REDMOND TM, YU S, LEE E et al.: Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. (1998) 20(4):344-351.
  • VESKE A, NILSSON SE, NARFSTROM K, GAL A: Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics (1999) 57(1):57-61.
  • PANG JJ, CHANG B, HAWES NL et al.: Retinal degeneration 12(rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vis. (2005) 11:152-162.
  • PANG JJ, CHANG B, KUMAR A et al.: Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol. Ther. (2006) 13(3):565-572.
  • DEJNEKA NS, SURACE EM, ALEMAN TS et al.: In utero gene therapy rescues vision in a murine model of congenital blindness. Mol. Ther. (2004) 9(2):182-188.
  • NARFSTROM K, KATZ ML, BRAGADOTTIR R et al.: Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci. (2003) 44(4):1663-1672.
  • JACOBSON SG, ACLAND GM, AGUIRRE GD et al.: Safety of recombinant adeno-associated virus Type 2-RPE65 vector delivered by ocular subretinal injection. Mol. Ther. (2006) 13(6):1074-1084.
  • BENNETT J: Commentary: an aye for eye gene therapy. Hum. Gene Ther. (2006) 17(2):177-179.
  • HONG DH, YUE G, ADAMIAN M, LI T: Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J. Biol. Chem. (2001) 276(15):12091-12099.
  • HONG DH, PAWLYK BS, SHANG J et al.: A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc. Natl. Acad. Sci. USA (2000) 97(7):3649-3654.
  • PAWLYK BS, SMITH AJ, BUCH PK et al.: Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest. Ophthalmol. Vis. Sci. (2005) 46(9):3039-3045.
  • JOMARY C, VINCENT KA, GRIST J, NEAL MJ, JONES SE: Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration. Gene Ther. (1997) 4(7):683-690.
  • ALI RR, SARRA GM, STEPHENS C et al.: Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat. Genet. (2000) 25(3):306-310.
  • SARRA GM, STEPHENS C, DE ALWIS M et al.: Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum. Mol. Genet. (2001) 10(21):2353-2361.
  • SCHLICHTENBREDE FC, DA CRUZ L, STEPHENS C et al.: Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J. Gene Med. (2003) 5(9):757-764.
  • D’CRUZ PM, YASUMURA D, WEIR J et al.: Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. (2000) 9(4):645-651.
  • NANDROT E, DUFOUR EM, PROVOST AC et al.: Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol. Dis. (2000) 7(6 Pt B):586-599.
  • SMITH AJ, SCHLICHTENBREDE FC, TSCHERNUTTER M et al.: AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol. Ther. (2003) 8(2):188-195.
  • SAUER CG, GEHRIG A, WARNEKE-WITTSTOCK R et al.: Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat. Genet. (1997) 17(2):164-170.
  • MOLDAY LL, HICKS D, SAUER CG, WEBER BH, MOLDAY RS: Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells. Invest. Ophthalmol. Vis. Sci. (2001) 42(3):816-825.
  • REID SN, YAMASHITA C, FARBER DB: Retinoschisin, a photoreceptor-secreted protein, and its interaction with bipolar and muller cells. J. Neurosci. (2003) 23(14):6030-6040.
  • WU WW, MOLDAY RS: Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for X-linked retinoschisis. J. Biol. Chem. (2003) 278(30):28139-28146.
  • ZENG Y, TAKADA Y, KJELLSTROM S et al.: RS-1 gene delivery to an adult Rs1h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked retinoschisis. Invest. Ophthalmol. Vis. Sci. (2004) 45(9):3279-3285.
  • MIN SH, MOLDAY LL, SEELIGER MW et al.: Prolonged recovery of retinal structure/function after gene therapy in an Rs1h-deficient mouse model of X-linked juvenile retinoschisis. Mol. Ther. (2005) 12(4):644-651.
  • BASSI MT, SCHIAFFINO MV, RENIERI A et al.: Cloning of the gene for ocular albinism Type 1 from the distal short arm of the X chromosome. Nat. Genet. (1995) 10(1):13-19.
  • INCERTI B, CORTESE K, PIZZIGONI A et al.: Oa1 knock-out: new insights on the pathogenesis of ocular albinism Type 1. Hum. Mol. Genet. (2000) 9(19):2781-2788.
  • CORTESE K, GIORDANO F, SURACE EM et al.: The ocular albinism Type 1 (OA1) gene controls melanosome maturation and size. Invest. Ophthalmol. Vis. Sci. (2005) 46(12):4358-4364.
  • SURACE EM, DOMENICI L, CORTESE K et al.: Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer. Mol. Ther. (2005) 12(4):652-658.
  • HENNIG AK, OGILVIE JM, OHLEMILLER KK et al.: AAV-mediated intravitreal gene therapy reduces lysosomal storage in the retinal pigmented epithelium and improves retinal function in adult MPS VII mice. Mol. Ther. (2004) 10(1):106-116.
  • GRIFFEY M, MACAULEY SL, OGILVIE JM, SANDS MS: AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol. Ther. (2005) 12(3):413-421.
  • DRYJA T: Retinitis pigmentosa and stationary night blindness. In: The Metabolic and Molecular Bases of Inherited Diseases. Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (Eds), McGraw-Hill, New York, NY, USA (2001):5903-5933.
  • KISSELEV OG: Focus on molecules: rhodopsin. Exp. Eye Res. (2005) 81(4):366-367.
  • WANG DY, CHAN WM, TAM PO et al.: Gene mutations in retinitis pigmentosa and their clinical implications. Clin. Chim. Acta (2005) 351(1-2):5-16.
  • OLSSON JE, GORDON JW, PAWLYK BS et al.: Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron (1992) 9(5):815-830.
  • NAASH MI, HOLLYFIELD JG, AL-UBAIDI MR, BAEHR W: Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc. Natl. Acad. Sci. USA (1993) 90(12):5499-5503.
  • STEINBERG RH, FLANNERY JG, NAASH MI et al.: Transgenic rat models of inherited degeneration caused by mutant opsin gene. [ARVO abstract]. Invest. Ophthalmol. Vis. Sci. (1996) 37(Suppl.):S698 (Abstract 3190).
  • PETTERS RM, ALEXANDER CA, WELLS KD et al.: Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. (1997) 15(10):965-970.
  • MACHIDA S, KONDO M, JAMISON JA et al.: P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest. Ophthalmol. Vis. Sci. (2000) 41(10):3200-3209.
  • TAN E, WANG Q, QUIAMBAO AB et al.: The relationship between opsin overexpression and photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. (2001) 42(3):589-600.
  • SALIBA RS, MUNRO PM, LUTHERT PJ, CHEETHAM ME: The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J. Cell Sci. (2002) 115(Pt 14):2907-2918.
  • ILLING ME, RAJAN RS, BENCE NF, KOPITO RR: A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol. Chem. (2002) 277(37):34150-34160.
  • SIOUD M, IVERSEN PO: Ribozymes, DNAzymes and small interfering RNAs as therapeutics. Curr. Drug Targets (2005) 6(6):647-653.
  • FANNING GC, SYMONDS G: Gene-expressed RNA as a therapeutic: issues to consider, using ribozymes and small hairpin RNA as specific examples. Handb. Exp. Pharmacol. (2006) (173):289-303.
  • DOUDNA JA, CECH TR: The chemical repertoire of natural ribozymes. Nature (2002) 418(6894):222-228.
  • DRENSER KA, TIMMERS AM, HAUSWIRTH WW, LEWIN AS: Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. (1998) 39(5):681-689.
  • LEWIN AS, DRENSER KA, HAUSWIRTH WW et al.: Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat. Med. (1998) 4(8):967-971. [Published erratum appears in Nat. Med. (1998) 4(9):1081].
  • LAVAIL MM, YASUMURA D, MATTHES MT et al.: Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long- term survival and late-stage therapy [In Process Citation]. Proc. Natl. Acad. Sci. USA (2000) 97(21):11488-11493.
  • FARRAR GJ, KENNA PF, HUMPHRIES P: On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J. (2002) 21(5):857-864.
  • FILIPOWICZ W: RNAi: the nuts and bolts of the RISC machine. Cell (2005) 122(1):17-20.
  • WANG Q, LIU M, KOZASA T et al.: Ribozyme- and siRNA-mediated suppression of RGS-containing RhoGEF proteins. Methods Enzymol. (2004) 389:244-265.
  • MILLINGTON-WARD S, ALLERS C, TUOHY G et al.: Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta. Hum. Mol. Genet. (2002) 11(19):2201-2206.
  • KIANG AS, PALFI A, ADER M et al.: Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation-independent approach. Mol. Ther. (2005) 12(3):555-561.
  • CASHMAN SM, BINKLEY EA, KUMAR-SINGH R: Towards mutation-independent silencing of genes involved in retinal degeneration by RNA interference. Gene Ther. (2005) 12(15):1223-1228.
  • TESSITORE A, PARISI F, DENTI MA et al.: Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Mol. Ther. (2006) 14(5):692-699.
  • DEJNEKA NS, BENNETT J: Gene therapy and retinitis pigmentosa: advances and future challenges. Bioessays (2001) 23(7):662-668.
  • LAVAIL MM, UNOKI K, YASUMURA D et al.: Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc. Natl. Acad. Sci. USA (1992) 89(23):11249-11253.
  • LAVAIL MM, YASUMURA D, MATTHES MT et al.: Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest. Ophthalmol. Vis. Sci. (1998) 39(3):592-602.
  • CHAUM E: Retinal neuroprotection by growth factors: a mechanistic perspective. J. Cell. Biochem. (2003) 88(1):57-75.
  • LEVEILLARD T, MOHAND-SAID S, LORENTZ O et al.: Identification and characterization of rod-derived cone viability factor. Nat. Genet. (2004) 36(7):755-759.
  • LAU D, MCGEE LH, ZHOU S et al.: Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2. Invest. Ophthalmol. Vis. Sci. (2000) 41(11):3622-3633.
  • GREEN ES, RENDAHL KG, ZHOU S et al.: Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of FGF-5 and FGF-18. Mol. Ther. (2001) 3(4):507-515.
  • LAU D, FLANNERY J: Viral-mediated FGF-2 treatment of the constant light damage model of photoreceptor degeneration. Doc. Ophthalmol. (2003) 106(1):89-98.
  • NIR I, KEDZIERSKI W, CHEN J, TRAVIS GH: Expression of Bcl-2 protects against photoreceptor degeneration in retinal degeneration slow (rds) mice. J. Neurosci. (2000) 20(6):2150-2154.
  • HAO W, WENZEL A, OBIN MS et al.: Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat. Genet. (2002) 32(2):254-260.
  • KIM DH, KIM JA, CHOI JS, JOO CK: Activation of caspase-3 during degeneration of the outer nuclear layer in the rd mouse retina. Ophthalmic Res. (2002) 34(3):150-157.
  • DOONAN F, DONOVAN M, COTTER TG: Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J. Neurosci. (2003) 23(13):5723-5731.
  • REX TS, ALLOCCA M, DOMENICI L et al.: Systemic but not intraocular Epo gene transfer protects the retina from light-and genetic-induced degeneration. Mol. Ther. (2004) 10(5):855-861.
  • LIANG FQ, DEJNEKA NS, COHEN DR et al.: AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol. Ther. (2001) 3(2):241-248.
  • LIANG FQ, ALEMAN TS, DEJNEKA NS et al.: Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol. Ther. (2001) 4(5):461-472.
  • BOK D, YASUMURA D, MATTHES MT et al.: Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp. Eye Res. (2002) 74(6):719-735.
  • SCHLICHTENBREDE FC, MACNEIL A, BAINBRIDGE JW et al.: Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Ther. (2003) 10(6):523-527.
  • SIEVING PA, CARUSO RC, TAO W et al.: Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl. Acad. Sci. USA (2006) 103(10):3896-3901.
  • FRASSON M, PICAUD S, LEVEILLARD T et al.: Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest. Ophthalmol. Vis. Sci. (1999) 40(11):2724-2734.
  • MCGEE SANFTNER LH, ABEL H, HAUSWIRTH WW, FLANNERY JG: Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol. Ther. (2001) 4(6):622-629.
  • MARTIN KR, QUIGLEY HA, ZACK DJ et al.: Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. (2003) 44(10):4357-4365.
  • SAPIEHA PS, PELTIER M, RENDAHL KG, MANNING WC, DI POLO A: Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol. Cell. Neurosci. (2003) 24(3):656-672.
  • MCKINNON SJ, LEHMAN DM, TAHZIB NG et al.: Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther. (2002) 5(6):780-787.
  • LEE P, WANG CC, ADAMIS AP: Ocular neovascularization: an epidemiologic review. Surv. Ophthalmol. (1998) 43(3):245-269.
  • MILLER JW, ADAMIS AP, AIELLO LP: Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab. Rev. (1997) 13(1):37-50.
  • PIERCE EA, AVERY RL, FOLEY ED, AIELLO LP, SMITH LE: Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. USA (1995) 92(3):905-909.
  • DAWSON DW, VOLPERT OV, GILLIS P et al.: Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science (1999) 285(5425):245-248.
  • GAO G, LI Y, ZHANG D et al.: Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett. (2001) 489(2-3):270-276.
  • CIULLA TA, DANIS RP, HARRIS A: Age-related macular degeneration: a review of experimental treatments. Surv. Ophthalmol. (1998) 43(2):134-146.
  • KRZYSTOLIK MG, AFSHARI MA, ADAMIS AP et al.: Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch. Ophthalmol. (2002) 120(3):338-346.
  • DUH EJ, YANG HS, SUZUMA I et al.: Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest. Ophthalmol. Vis. Sci. (2002) 43(3):821-829.
  • MORI K, DUH E, GEHLBACH P et al.: Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J. Cell. Physiol. (2001) 188(2):253-263.
  • ADAMIS AP, ALTAWEEL M, BRESSLER NM et al.: Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology (2006) 113(1):23-28.
  • D’AMICO DJ, PATEL M, ADAMIS AP et al.: Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. Ophthalmology (2006) 113(6):1001, e1-e6.
  • ROSENFELD PJ, HEIER JS, HANTSBARGER G, SHAMS N: Tolerability and efficacy of multiple escalating doses of ranibizumab (Lucentis) for neovascular age-related macular degeneration. Ophthalmology (2006) 113(4):632, e1.
  • SHWEIKI D, ITIN A, SOFFER D, KESHET E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature (1992) 359(6398):843-845.
  • FERRARA N, HOUCK K, JAKEMAN L, LEUNG DW: Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev. (1992) 13(1):18-32.
  • KWAK N, OKAMOTO N, WOOD JM, CAMPOCHIARO PA: VEGF is major stimulator in model of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. (2000) 41(10):3158-3164.
  • ADAMIS AP, MILLER JW, BERNAL MT et al.: Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. (1994) 118(4):445-450.
  • MALECAZE F, CLAMENS S, SIMORRE-PINATEL V et al.: Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch. Ophthalmol. (1994) 112(11):1476-1482.
  • KENDALL RL, WANG G, THOMAS KA: Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun. (1996) 226(2):324-328.
  • BAINBRIDGE JW, MISTRY A, DE ALWIS M et al.: Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther. (2002) 9(5):320-326.
  • SMITH LE, WESOLOWSKI E, MCLELLAN A et al.: Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. (1994) 35(1):101-111.
  • CAMPOCHIARO PA: Retinal and choroidal neovascularization. J. Cell. Physiol. (2000) 184(3):301-310.
  • LAI YK, SHEN WY, BRANKOV M et al.: Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther. (2002) 9(12):804-813.
  • LAI CM, DUNLOP SA, MAY LA et al.: Generation of transgenic mice with mild and severe retinal neovascularisation. Br. J. Ophthalmol. (2005) 89(7):911-916.
  • LAI CM, SHEN WY, BRANKOV M et al.: Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol. Ther. (2005) 12(4):659-668.
  • MORI K, GEHLBACH P, YAMAMOTO S et al.: AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. (2002) 43(6):1994-2000.
  • RAISLER BJ, BERNS KI, GRANT MB, BELIAEV D, HAUSWIRTH WW: Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1-3 of angiostatin reduce retinal neovascularization. Proc. Natl. Acad. Sci. USA (2002) 99(13):8909-8914.
  • O’REILLY MS, HOLMGREN L, SHING Y et al.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell (1994) 79(2):315-328.
  • O’REILLY MS, BOEHM T, SHING Y et al.: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell (1997) 88(2):277-285.
  • QI JH, EBRAHEM Q, MOORE N et al.: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. (2003) 9(4):407-415.
  • MENESES PI, HAJJAR KA, BERNS KI, DUVOISIN RM: Recombinant angiostatin prevents retinal neovascularization in a murine proliferative retinopathy model. Gene Ther. (2001) 8(8):646-648.
  • CAO Y, O’REILLY MS, MARSHALL B et al.: Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J. Clin. Invest. (1998) 101(5):1055-1063.
  • LAI CC, WU WC, CHEN SL et al.: Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest. Ophthalmol. Vis. Sci. (2001) 42(10):2401-2407.
  • AURICCHIO A, BEHLING K, MAGUIRE A et al.: Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol. Ther. (2002) 6(4):490.
  • MORI K, ANDO A, GEHLBACH P et al.: Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am. J. Pathol. (2001) 159(1):313-320.
  • ZHANG S, KACHI S, HACKETT SF et al.: Engineered zinc finger protein transcription factors as a potential therapy for choroidal neovascularization. American Society of Gene Therapy 9th Annual Meeting. Baltimore, MD, USA (31 May – 4 June 2006).
  • BOAST K, BINLEY K, IQBALL S et al.: Characterization of physiologically regulated vectors for the treatment of ischemic disease. Hum. Gene Ther. (1999) 10(13):2197-2208.
  • BAINBRIDGE JW, MISTRY A, BINLEY K et al.: Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization. Gene Ther. (2003) 10(12):1049-1054.
  • CHEVEZ-BARRIOS P, CHINTAGUMPALA M, MIELER W et al.: Response of retinoblastoma with vitreous tumor seeding to adenovirus-mediated delivery of thymidine kinase followed by ganciclovir. J. Clin. Oncol. (2005) 23(31):7927-7935.
  • CAMPOCHIARO PA, NGUYEN QD, SHAH SM et al.: Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a Phase I clinical trial. Hum. Gene Ther. (2006) 17(2):167-176.
  • JACOBSON SG, ALEMAN TS, CIDECIYAN AV et al.: Identifying photoreceptors in blind eyes caused by RPE65 mutations: prerequisite for human gene therapy success. Proc. Natl. Acad. Sci. USA (2005) 102(17):6177-6182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.