162
Views
14
CrossRef citations to date
0
Altmetric
Review

The future of cell therapies in the treatment of Parkinson's disease

, &
Pages 1487-1498 | Published online: 05 Oct 2007

Bibliography

  • KLEINER-FISMAN G, FISMAN DN, SIME E, SAINT-CYR JA, LOZANO AM, LANG AE: Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J. Neurosurg. (2003) 99(3):489-495.
  • PATEL NK, BUNNAGE M, PLAHA P, SVENDSEN CN, HEYWOOD P, GILL SS: Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol. (2005) 57(2):298-302.
  • GILL SS, PATEL NK, HOTTON GR et al.: Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. (2003) 9(5):589-595.
  • LANG AE, GILL S, PATEL NK et al.: Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson's disease. Ann. Neurol. (2006) 59(3):459-466.
  • PERLOW MJ, FREED WJ, HOFFER BJ, SEIGER A, OLSON L, WYATT RJ: Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science (1979) 204(4393):643-647.
  • BJÖRKLUND A, STENEVI U: Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. (1979) 177(3):555-560.
  • BJÖRKLUND A, DUNNETT SB, STENEVI U, LEWIS ME, IVERSEN SD: Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. (1980) 199(2):307-333.
  • BRUNDIN P, NILSSON OG, STRECKER RE, LINDVALL O, ASTEDT B, BJÖRKLUND A: Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease. Exp. Brain Res. (1986) 65(1):235-240.
  • WICTORIN K, BRUNDIN P, SAUER H, LINDVALL O, BJÖRKLUND A: Long distance directed axonal growth from human dopaminergic mesencephalic neuroblasts implanted along the nigrostriatal pathway in 6-hydroxydopamine lesioned adult rats. J. Comp. Neurol. (1992) 323(4):475-494.
  • FREED CR, BREEZE RE, ROSENBERG NL et al.: Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N. Engl. J. Med. (1992) 327(22):1549-1555.
  • HAGELL P, SCHRAG A, PICCINI P et al.: Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. Brain (1999) 122:1121-1132.
  • HAUSER RA, FREEMAN TB, SNOW BJ et al.: Long-term evaluation of bilateral fetal nigral transplantation in Parkinson's disease. Arch. Neurol. (1999) 56:179-187.
  • BRUNDIN P, POGARELL O, HAGELL P et al.: Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain (2000) 123(Part 7):1380-1390.
  • FREED CR, GREENE PE, BREEZE RE et al.: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Eng. J. Med. (2001) 344(10):710-719.
  • OLANOW CW, GOETZ CG, KORDOWER JH et al.: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann. Neurol. (2003) 54(3):403-414.
  • PICCINI P, PAVESE N, HAGELL P et al.: Factors affecting the clinical outcome after neural transplantation in Parkinson's disease. Brain (2005) 128(Part 12):2977-2986.
  • MENDEZ I, SANCHEZ-PERNAUTE R, COOPER O et al.: Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain (2005) 128(Part 7):1498-1510.
  • BRECKNELL JE, HAQUE NS, DU JS et al.: Functional and anatomical reconstruction of the 6-hydroxydopamine lesioned nigrostriatal system of the adult rat. Neuroscience (1996a) 71(4):913-925.
  • NAKAJIMA K, HIDA H, SHIMANO Y et al.: GDNF is a major component of trophic activity in DA-depleted striatum for survival and neurite extension of DAergic neurons. Brain Res. (2001) 916(1-2):76-84.
  • NIIJIMA K, ARAKI M, OGAWA M et al.: Enhanced survival of cultured dopamine neurons by treatment with soluble extracts from chemically deafferentiated striatum of adult rat brain. Brain Res. (1990) 528(1):151-154.
  • ZHOU J, SHEN Y, TANG Z, XU L, BRADFORD HF, YU Y: Striatal extracts promote the survival and phenotypic expression of rat fetal dopaminergic neurons in vitro. Neurosci. Lett. (2000) 292(1):5-8.
  • CHOI-LUNDBERG DL, BOHN MC: Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res. Dev. Brain Res. (1995) 85(1):80-88.
  • CHAUHAN NB, SIEGEL GJ, LEE JM: Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson's disease brain. J. Chem. Neuroanat. (2001) 21(4):277-288.
  • SAWADA H, IBI M, KIHARA T et al.: Neuroprotective mechanism of glial cell line-derived neurotrophic factor in mesencephalic neurons. J. Neurochem. (2000) 74(3):1175-1184.
  • KORDOWER JH, EMBORG ME, BLOCH J et al.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science (2000) 290(5492):767-773.
  • BENSADOUN JC, DÉGLON N, TSENG JL, RIDET JL, ZURN AD, AEBISCHER P: Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Exp. Neurol. (2000) 164(1):15-24.
  • YASUHARA T, SHINGO T, MURAOKA K et al.: Early transplantation of an encapsulated glial cell line-derived neurotrophic factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson's disease. J. Neurosurg. (2005) 102:80-89.
  • APOSTOLIDES C, SANFORD E, HONG M, MENDEZ I: Glial cell line-derived neurotrophic factor improves intrastriatal graft survival of stored dopaminergic cells. Neuroscience (1998) 83(2):363-372.
  • HEBB AO, HEBB K, RAMACHANDRAN AC, MENDEZ I: Glial cell line-derived neurotrophic factor-supplemented hibernation of fetal ventral mesencephalic neurons for transplantation in Parkinson disease: long-term storage. J. Neurosurg. (2003) 98(5):1078-1083.
  • BAUER M, MEYER M, BREVIG T et al.: Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue. Exp. Neurol. (2002) 177(1):40-49.
  • SHINGO T, DATE I, YOSHIDA H, OHMOTO T: Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson's disease. J. Neurosci. Res. (2002) 69(6):946-954.
  • NUTT JG, BURCHIEL KJ, COMELLA CL et al.; ICV GDNF STUDY GROUP: Implanted intracerebroventricular. Glial cell line-derived neurotrophic factor, randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology (2003) 60(1):69-73.
  • KORDOWER JH, PALFI S, CHEN EY et al.: Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann. Neurol. (1999) 46:419-424.
  • KEYNES RJ, COOK GM: Repulsive and inhibitory signals. Curr. Opin. Neurobiol. (1995) 5(1):75-82.
  • BARKER RA, DUNNETT SB, FAISSNER A, FAWCETT JW: The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp. Neurol. (1996) 141(1):79-93.
  • WILBY MJ, SINCLAIR SR, MUIR EM et al.: A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra. J. Neurosci. (1999) 19(6):2301-2312.
  • ZHOU FC, CHIANG YH, WANG Y: Constructing a new nigrostriatal pathway in the Parkinsonian model with bridged neural transplantation in substantia nigra. J. Neurosci. (1996) 16(21):6965-6974.
  • WINKLER C, BENTLAGE C, NIKKHAH G, SAMII M, BJÖRKLUND A: Intranigral transplants of GABA-rich striatal tissue induce behavioral recovery in the rat Parkinson model and promote the effects obtained by intrastriatal dopaminergic transplants. Exp. Neurol. (1999) 155(2):165-186.
  • BRECKNELL JE, DU JS, MUIR E et al.: Bridge grafts of fibroblast growth factor-4-secreting schwannoma cells promote functional axonal regeneration in the nigrostriatal pathway of the adult rat. Neuroscience (1996b) 74(3):775-784.
  • DAHLSTROM A, FUXE K: Evidence for the existence of monoamine-containing neurons in the central nervous system: demonstration of monoamines in cell bodies of brainstem neurons. Acta Physiol. Scand. (1964) (Suppl. 232):1-55.
  • VAN DOMBURG PH, TEN DONKELAAR HJ: The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging disease. Adv. Anatomy Embryol. Cell Biol. (1991) 121:1-132.
  • HALLIDAY GM, MCRITCHIE DA, CARTWRIGHT HR, PAMPHLETT RS, HELY MA, MORRIS JGL: Midbrain neuropathology in idiopathic Parkinson's disease and diffuse Lewy body disease. J. Clin. Neurosci. (1996) 3:52-60.
  • VAN DEN MUNCKHOF P, LUK KC, STE-MARIE L et al.: Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development (2003) 130:2535-2542.
  • RIDDLE R, POLLOCK JD: Making connections: the development of mesencephalic dopaminergic neurons. Dev. Brain Res. (2003) 147:3-21.
  • CHUNG S, HEDLUND E, HWANG M et al.: The homeodomain transcription factor Pitx3 facilitates differentation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol. Cell. Neurosci. (2005) 28:241-252.
  • THOMPSON L, BARRAUD P, ANDERSSON E, KIRIK D, BJÖRKLUND A: Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J. Neurosci. (2005) 25(27):6467-6477.
  • KUAN WL, LIN R, TYERS P, BARKER RA: The importance of A9 dopaminergic neurons in mediating the functional benefits of fetal ventral mesencephalon transplants and levodopa-induced dyskinesias. Neurobiol. Dis. (2007) 25(3):594-608.
  • MOORE AE, CICCHETTI F, HENNEN J, ISACSON O: Parkinsonian motor deficits are reflected by proportional A9/A10 dopamine neuron degeneration in the rat. Exp. Neurol. (2001) 172:363-376.
  • DELONG MR: Primate models of movement disorders of basal ganglia origin. Trends Neurosci. (1990) 13:281-285.
  • BORAUD T, BEZARD E, BIOULAC B, GROSS CE: Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alteration of pallidal neurons in the MPTP-treated monkey. Brain (2001) 124:546-557.
  • BEZARD E, FERRY S, MACH U et al.: Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat. Med. (2003) 9(6):762-767.
  • HAGELL P, PICCINI P, BJÖRKLUND A et al.: Dyskinesia following neural transplantation in Parkinson's disease. Nat. Neurosci. (2002) 5(7):627-628.
  • MA Y, FEIGIN A, DHAWAN V et al.: Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol. (2002) 52:628-634.
  • ANDERSSON M, HILBERTSON A, CENCI MA: Striatal FosB expression is casually linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease. Neurobiol. Dis. (1999) 6:461-474.
  • CARLSSON T, WINKLER C, LUNDBLAD M, CENCI MA, BJÖRKLUND A, KIRIK D: Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol. Dis. (2006) 21(3):657-668.
  • LANE EL, WINKLER C, BRUNDIN P, CENCI MA: The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat. Neurobiol. Dis. (2006) 22(2):334-345.
  • LE BLANC K, RINGDEN O: Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr. Opin. Immunol. (2006) 18(5):586-591.
  • PITTENGER MF, MACKAY AM, BECK SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science (1999) 284(5411):143-147.
  • JIANG Y, JAHAGIRDAR BN, REINHARDT RL et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature (2002) 418(6893):41-49.
  • RIVERA FJ, SIERRALTA WD, MINGUELL JJ, AIGNER L: Adult hippocampus derived soluble factors induce a neuronal-like phenotype in mesenchymal stem cells. Neurosci. Lett. (2006) 406(1-2):49-54.
  • KIM S, HONMOU O, KATO K et al.: Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res. (2006) 1123(1):27-33.
  • DEZAWA M, KANNO H, HOSHINO M et al.: Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Investig. (2004) 113(12):1701-1710.
  • ALVAREZ-DOLADO M, GARCIA-VERDUGO JM, FIKE JR et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature (2003) 425(6961):968-973.
  • STAGG J: Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens (2007) 69(1):1-9.
  • LI Y, CHEN J, CHEN XG et al.: Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology (2002) 59(4):514-523.
  • MCGREGOR KH, GIL J, LAHIRI S: A morphometric study of the carotid body in chronically hypoxic rats. J. Appl. Physiol. (1984) 57:1430-1438.
  • ESPEJO EF, MONTORO RJ, ARMENGOL JA, LÓPEZ-BARNEO J: Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron (1998) 20(2):197-206.
  • TOLEDO-ARAL JJ, MÉNDEZ-FERRER S, PARDAL R, ECHEVARRÍA M, LÓPEZ-BARNEO J: Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted Parkinsonian rats. J. Neurosci. (2003) 23(1):141-148.
  • LUQUIN MR, MONTORO RJ, GUILLEN J et al.: Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron (1999) 22(4):743-750.
  • MINGUEZ-CASTELLANOS A, ESCAMILLA-SEVILLA F, HOTTON GR et al.: Carotid body autotransplantation in Parkinson disease: a clinical and PET study. J. Neurol. Neurosurg. Psychiatry (2007).
  • MCKAY BS, GOODMAN B, FALK T, SHERMAN SJ: Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson's disease: results from an in vitro model system. Exp. Neurol. (2006) 201(1):234-243.
  • SUBRAMANIAN T, MARCHIONINI D, POTTER EM, CORNFELDT ML: Striatal xenotransplantation of human retinal pigment epithelial cells attached to microcarriers in hemiparkinsonian rats ameliorates behavioral deficits without provoking a host immune response. Cell Transplant. (2002) 11(3):207-214.
  • DOUDET DJ, CORNFELDT ML, HONEY CR, SCHWEIKERT AW, ALLEN RC: PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease. Exp. Neurol. (2004) 189(2):361-368.
  • STOVER NP, BAKAY RA, SUBRAMANIAN T et al.: Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch. Neurol. (2005) 62(12):1833-1837.
  • KAWASAKI H, MIZUSEKI K, NISHIKAWA S et al.: Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron (2000) 28(1):31-40.
  • TAKAGI Y, TAKAHASHI J, SAIKI H et al.: Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. (2005) 115(1):102-109.
  • LEE SH, LUMELSKY N, STUDER L, AUERBACH JM, MCKAY RD: Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. (2000) 18(6):675-679.
  • KIM JH, AUERBACH JM, RODRIGUEZ-GOMEZ JA et al.: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature (2002) 418(6893):50-56.
  • REUBINOFF BE, ITSYKSON P, TURETSKY T et al.: Neural progenitors from human embryonic stem cells. Nat. Biotechnol. (2001) 19(12):1134-1140.
  • ZHANG SC, WERNIG M, DUNCAN ID, BRÜSTLE O, THOMSON JA: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. (2001) 19(12):1129-1133.
  • PERRIER AL, TABAR V, BARBERI T et al.: Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA (2004) 101(34):12543-12548.
  • ROY NS, CLEREN C, SINGH SK, YANG L, BEAL MF, GOLDMAN SA: Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. (2006) 12(11):1259-1268.
  • BJORKLUND LM, SÁNCHEZ-PERNAUTE R, CHUNG S et al.: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA (2002) 99(4):2344-2349.
  • IACOVITTI L, DONALDSON AE, MARSHALL CE, SUON S, YANG M: A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: studies in vitro and in vivo. Brain Res. (2007) 1127(1):19-25.
  • FUKUDA H, TAKAHASHI J, WATANABE K et al.: Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells (2006) 24(3):763-771.
  • CHUNG S, SHIN BS, HEDLUND E et al.: Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J. Neurochem. (2006) 97(5):1467-1480.
  • COLLIER TJ, SORTWELL CE, ELSWORTH JD et al.: Embryonic ventral mesencephalic grafts to the substantia nigra of MPTP-treated monkeys: feasibility relevant to multiple-target grafting as a therapy for Parkinson's disease. J. Comp. Neurol. (2002) 442(4):320-330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.