281
Views
29
CrossRef citations to date
0
Altmetric
Review

Adult marrow-derived very small embryonic-like stem cells and tissue engineering

, , , , , & , MD PhD show all
Pages 1499-1514 | Published online: 05 Oct 2007

Bibliography

  • BAILEY AS, JIANG S, AFENTOULIS M et al.: Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood (2004) 103:13-19.
  • BONILLA S, SILVA A, VALDES L, GEIJO E, GARCIA-VERDUGO JM, MARTINEZ S: Functional neural stem cells derived from adult bone marrow. Neuroscience (2005) 133:85-95.
  • BUZANSKA L, MACHAJ EK, ZABLOCKA B, POJDA Z, DOMANSKA-JANIK K: Human cord blood-derived cells attain neuronal and glial features in vitro. J. Cell Sci. (2002) 115:2131-2138.
  • CORBEL SY, LEE A, YI L et al.: Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. (2003) 9:1528-1532.
  • KAKINUMA S, TANAKA Y, CHINZEI R et al.: Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells (2003) 21:217-227.
  • THOMSON JA, ITSKOVITZ-ELDOR J, SHAPIRO SS et al.: Embryonic stem cell lines derived from human blastocysts. Science (1998) 282:1145-1147.
  • THOMSON JA, KALISHMAN J, GOLOS TG et al.: Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA (1995) 92:7844-7848.
  • RIDEOUT WM III, EGGAN K, JAENISCH R: Nuclear cloning and epigenetic reprogramming of the genome. Science (2001) 293:1093-1098.
  • HOCHEDLINGER K, JAENISCH R: Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N. Engl. J. Med. (2003) 349:275-286.
  • POMERANTZ J, BLAU HM: Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat. Cell Biol. (2004) 6:810-816.
  • SURANI MA: Reprogramming of genome function through epigenetic inheritance. Nature (2001) 414:122-128.
  • JIANG Y, JAHAGIRDAR BN, REINHARDT RL et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature (2002) 418:41-49.
  • JOHNSON J, BAGLEY J, SKAZNIK-WIKIEL M et al.: Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell (2005) 122:303-315.
  • COLTER DC, SEKIYA I, PROCKOP DJ: Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc. Natl. Acad. Sci. USA (2001) 98:7841-7845.
  • KRAUSE DS, THEISE ND, COLLECTOR MI et al.: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell (2001) 105:369-377.
  • KUCIA M, RECA R, CAMPBELL FR et al.: A population of very small embryonic-like (VSEL-SC) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia (2006) 20:857-869.
  • KUCIA M, HALASA M, WYSOCZYNSKI M et al.: Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia (2007) 21:297-303.
  • LIU C, CHEN Z, CHEN Z, ZHANG T, LU Y: Multiple tumor types may originate from bone marrow-derived cells. Neoplasia (2006) 8:716-724.
  • KUCIA M, ZUBA-SURMA E, WYSOCZYNSKI M et al.: Physiological and pathological consequences of identification of very small embryonic like (VSEL-SC) stem cells in adult bone marrow. J. Physiol. Pharmacol. (2006) 57(Suppl. 5):5-18.
  • MAKINO S, FUKUDA K, MIYOSHI S et al.: Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. (1999) 103:697-705.
  • PETERSEN BE, BOWEN WC, PATRENE KD et al.: Bone marrow as a potential source of hepatic oval cells. Science (1999) 284:1168-1170.
  • ORKIN SH, ZON LI: Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat. Immunol. (2002) 3:323-328.
  • RATAJCZAK MZ, KUCIA M, RECA R, MAJKA M, JANOWSKA-WIECZOREK A, RATAJCZAK J: Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia (2004) 18:29-40.
  • KUCIA M, RECA R, JALA VR, DAWN B, RATAJCZAK J, RATAJCZAK MZ: Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia (2005) 19:1118-1127.
  • KUCIA M, RATAJCZAK J, RATAJCZAK MZ: Are bone marrow stem cells plastic or heterogenous – that is the question. Exp. Hematol. (2005) 33:613-623.
  • KUCIA M, RATAJCZAK J, RATAJCZAK MZ: Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol. Cell (2005) 97:133-146.
  • RATAJCZAK MZ, MACHALINSKI B, WOJAKOWSKI W, RATAJCZAK J, KUCIA M: A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia (2007) 21:860-867.
  • ANJOS-AFONSO F, BONNET D: Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood (2007) 109:1298-1306.
  • LAMOURY FM, CROITORU-LAMOURY J, BREW BJ: Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy (2006) 8:228-242.
  • YU H, FANG D, KUMAR SM et al.: Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am. J. Pathol. (2006) 168:1879-1888.
  • DYCE PW, WEN L, LI J: In vitro germline potential of stem cells derived from fetal porcine skin. Nat. Cell Biol. (2006) 8:384-390.
  • LING TY, KUO MD, LI CL et al.: Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc. Natl. Acad. Sci. USA (2006) 103:9530-9535.
  • PALLANTE BA, DUIGNAN I, OKIN D et al.: Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ. Res. (2007) 100:E1-E11.
  • KRUSE C, KAJAHN J, PETSCHNIK AE et al.: Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures. Ann. Anat. (2006) 188:503-517.
  • DANNER S, KAJAHN J, GEISMANN C, KLINK E, KRUSE C: Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Mol. Hum. Reprod. (2007) 13:11-20.
  • GUAN K, NAYERNIA K, MAIER LS et al.: Pluripotency of spermatogonial stem cells from adult mouse testis. Nature (2006) 440:1199-1203.
  • KANATSU-SHINOHARA M, INOUE K, LEE J et al.: Generation of pluripotent stem cells from neonatal mouse testis. Cell (2004) 119:1001-1012.
  • KERKIS I, KERKIS A, DOZORTSEV D et al.: Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs (2006) 184:105-116.
  • KOSO H, OUCHI Y, TABATA Y et al.: SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells that are regulated by the Wnt signaling pathway. Dev. Biol. (2006) 292:265-276.
  • DE COPPI P, BARTSCH G Jr, SIDDIQUI MM et al.: Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. (2007) 25:100-106.
  • RATAJCZAK J, KUCIA M, ZUBA-SURMA E et al.: The CD45- Lin- adult marrow-derived CXCR4+ SSEA1+ Oct4+ very Small Embryonic-Like (VSEL-SC) Stem cells form in vitro spheres which may differentiate into CD45+ hematopoietic stem cells. ASH, 48th annual meeting. Orlando, USA (2006):Abstract 280.
  • D'IPPOLITO G, DIABIRA S, HOWARD GA, MENEI P, ROOS BA, SCHILLER PC: Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J. Cell Sci. (2004) 117:2971-2981.
  • POCHAMPALLY RR, SMITH JR, YLOSTALO J, PROCKOP DJ: Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood (2004) 103:1647-1652.
  • ZENG L, RAHRMANN E, HU Q et al.: Multipotent adult progenitor cells from swine bone marrow. Stem Cells (2006) 24:2355-2366.
  • D'IPPOLITO G, HOWARD GA, ROOS BA, SCHILLER PC: Isolation and characterization of marrow-isolated adult multilineage inducible (MIAMI) cells. Exp. Hematol. (2006) 34:1608-1610.
  • NAYERNIA K, LEE JH, DRUSENHEIMER N et al.: Derivation of male germ cells from bone marrow stem cells. Lab. Invest. (2006) 86:654-663.
  • KUCIA M, MACHALINSKI B, RATAJCZAK MZ: The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol. Exp. (Wars) (2006) 66:331-341.
  • DONOVAN PJ: The germ cell – the mother of all stem cells. Int. J. Dev. Biol. (1998) 42:1043-1050.
  • ZWAKA TP, THOMSON JA: A germ cell origin of embryonic stem cells? Development (2005) 132:227-233.
  • EVANS MJ, KAUFMAN MH: Establishment in culture of pluripotential cells from mouse embryos. Nature (1981) 292:154-156.
  • FRANCAVILLA S, ZAMBONI L: Differentiation of mouse ectopic germinal cells in intra- and perigonadal locations. J. Exp. Zool. (1985) 233:101-109.
  • JORDAN HE: The history of the primordial germ cells in the Loggerhead Turtle Embryo. Proc. Natl. Acad. Sci. USA (1917) 3:271-275.
  • UPADHYAY S, ZAMBONI L: Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc. Natl. Acad. Sci. USA (1982) 79:6584-6588.
  • GOSSLER A, DOETSCHMAN T, KORN R, SERFLING E, KEMLER R: Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc. Natl. Acad. Sci. USA (1986) 83:9065-9069.
  • STRELCHENKO N, VERLINSKY O, KUKHARENKO V, VERLINSKY Y: Morula-derived human embryonic stem cells. Reprod. Biomed. Online (2004) 9:623-629.
  • AKUTSU H, COWAN CA, MELTON D: Human embryonic stem cells. Methods Enzymol. (2006) 418:78-92.
  • YAMAZAKI Y, MANN MR, LEE SS et al.: Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl. Acad. Sci. USA (2003) 100:12207-12212.
  • MANN JR: Imprinting in the germ line. Stem Cells (2001) 19:287-294.
  • SATO S, YOSHIMIZU T, SATO E, MATSUI Y: Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol. Reprod. Dev. (2003) 65:41-50.
  • SZABO PE, MANN JR: Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. (1995) 9:1857-1868.
  • CHIQUOINE AD: The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat. Rec. (1954) 118:135-146.
  • MCLAREN A: Development of primordial germ cells in the mouse. Andrologia (1992) 24:243-247.
  • MCLAREN A: Primordial germ cells in the mouse. Dev. Biol. (2003) 262:1-15.
  • DE FELICI M, MCLAREN A: Isolation of mouse primordial germ cells. Exp. Cell Res. (1982) 142:476-482.
  • MCLAREN A, LAWSON KA: How is the mouse germ-cell lineage established? Differentiation (2005) 73:435-437.
  • DE FELICI M, MCLAREN A: In vitro culture of mouse primordial germ cells. Exp. Cell Res. (1983) 144:417-427.
  • DONOVAN PJ: Growth factor regulation of mouse primordial germ cell development. Curr. Top. Dev. Biol. (1994) 29:189-225.
  • SHAMBLOTT MJ, AXELMAN J, WANG S et al.: Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA (1998) 95:13726-13731.
  • MATSUI Y, ZSEBO K, HOGAN BL: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell (1992) 70:841-847.
  • RESNICK JL, BIXLER LS, CHENG L, DONOVAN PJ: Long-term proliferation of mouse primordial germ cells in culture. Nature (1992) 359:550-551.
  • TURNPENNY L, BRICKWOOD S, SPALLUTO CM et al.: Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells (2003) 21:598-609.
  • SAITOU M, BARTON SC, SURANI MA: A molecular programme for the specification of germ cell fate in mice. Nature (2002) 418:293-300.
  • WEI G, MAHOWALD AP: The germline: familiar and newly uncovered properties. Annu. Rev. Genet. (1994) 28:309-324.
  • LEE J, INOUE K, ONO R et al.: Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development (2002) 129:1807-1817.
  • WYLIE C: Germ cells. Cell (1999) 96:165-174.
  • JOHNSON J, CANNNG J, KANEKO T, PRU JK, TILLY JL: Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature (2004) 228:145-150.
  • EGGAN K, JURGA S, GOSDEN R, MIN IM, WAGERS AJ: Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature (2006) 441:1109-1114.
  • VIRCHOW R: Editorial Archive fuer pathologische. Anatomie und Physiologie fuer klinische Medizin (1855) 8:23-54.
  • BECK JS, FULMER HF, LEE ST: Solid malignant ovarian teratoma with “embryoid bodies” and trophoblastic differentiation. J. Pathol. (1969) 99:67-73.
  • DUHIG JT: An unusual adenocarcinoma of the ovary; a case simulating Schiller's mesonephroma. Am. J. Obstet. Gynecol. (1959) 77:201-205.
  • MACCHIARINI P, OSTERTAG H: Uncommon primary mediastinal tumours. Lancet Oncol. (2004) 5:107-118.
  • OOSTERHUIS JW, LOOIJENGA LH: Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer (2005) 5:210-222.
  • REYA T, MORRISON SJ, CLARKE MF, WEISSMAN IL: Stem cells, cancer, and cancer stem cells. Nature (2001) 414:105-111.
  • SELL S: Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. (2004) 51:1-28.
  • SINGH SK, HAWKINS C, CLARKE ID et al.: Identification of human brain tumour initiating cells. Nature (2004) 432:396-401.
  • RATAJCZAK MZ, KUCIA M, DOBROWOLSKA H, WANZECK J, RECA R, RATAJCZAK J: Emerging concept of cancer as a stem cell disorder. CEJB (2006) 4:1-15.
  • HOUGHTON J, STOICOV C, NOMURA S et al.: Gastric cancer originating from bone marrow-derived cells. Science (2004) 306:1568-1571.
  • TOLAR J, NAUTA AJ, OSBORN MJ et al.: Sarcoma derived from cultured mesenchymal stem cells. Stem Cells (2007) 25:371-379.
  • SHI Q, RAFII S, WU MH et al.: Evidence for circulating bone marrow-derived endothelial cells. Blood (1998) 92:362-367.
  • RAFII S, LYDEN D: Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. (2003) 9:702-712.
  • DUESBERG P, LI R, FABARIUS A, HEHLMANN R: The chromosomal basis of cancer. Cell Oncol. (2005) 27:293-318.
  • ASAHARA T, MASUDA H, TAKAHASHI T et al.: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. (1999) 85:221-228.
  • FRIEDENSTEIN AJ, PIATETZKY S II, PETRAKOVA KV: Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. (1966) 16:381-390.
  • ARA T, NAKAMURA Y, EGAWA T et al.: Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc. Natl. Acad. Sci. USA (2003) 100:5319-5323.
  • CRANE IJ, WALLACE CA, MCKILLOP-SMITH S, FORRESTER JV: CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1 α. J. Immunol. (2000) 165:4372-4378.
  • KUZNETSOV SA, MANKANI MH, GRONTHOS S, SATOMURA K, BIANCO P, ROBEY PG: Circulating skeletal stem cells. J. Cell Biol. (2001) 153:1133-1140.
  • WOJAKOWSKI W, TENDERA M, MICHALOWSKA A et al.: Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation (2004) 110:3213-3220.
  • KUCIA M, DAWN B, HUNT G et al.: Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ. Res. (2004) 95:1191-1199.
  • ABBOTT JD, HUANG Y, LIU D, HICKEY R, KRAUSE DS, GIORDANO FJ: Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation (2004) 110:3300-3305.
  • EGHBALI-FATOURECHI GZ, LAMSAM J, FRASER D, NAGEL D, RIGGS BL, KHOSLA S: Circulating osteoblast-lineage cells in humans. N. Engl. J. Med. (2005) 352:1959-1966.
  • GOMPERTS BN, BELPERIO JA, RAO PN et al.: Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J. Immunol. (2006) 176:1916-1927.
  • KALE S, KARIHALOO A, CLARK PR, KASHGARIAN M, KRAUSE DS, CANTLEY LG: Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J. Clin. Invest. (2003) 112:42-49.
  • TAKAHASHI T, KALKA C, MASUDA H et al.: Ischemia- and cytokine - induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. (1999) 5:434-438.
  • KUCIA M, ZHANG YP, RECA R et al.: Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia (2006) 20:18-28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.