484
Views
44
CrossRef citations to date
0
Altmetric
Review

mRNA stability and cancer: an emerging link?

&
Pages 1515-1529 | Published online: 05 Oct 2007

Bibliography

  • GARNEAU NL, WILUSZ J, WILUSZ CJ: The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. (2007) 8:113-126.
  • PARKER R, SHETH U: P bodies and the control of mRNA translation and degradation. Mol. Cell (2007) 25:635-646.
  • LU P, VOGEL C, WANG R et al.: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. (2007) 25:117-124.
  • FAN J, YANG X, WANG W et al.: Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Natl. Acad. Sci. USA (2002) 99:10611-10616.
  • CHEADLE C, FAN J, CHO-CHUNG YS et al.: Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics (2005) 6:75.
  • CHEN CY, SHYU AB: AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. (1995) 20:465-470.
  • PENG SS, CHEN C, SHYU AB: Functional characterization of a non-AUUUA AU-rich element from the c-jun proto-oncogene mRNA: evidence for a novel class of AU-rich elements. Mol. Cell Biol. (1996) 16:1490-1499.
  • XU N, CHEN CY, SHYU AB: Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol. Cell Biol. (1997) 17:4611-4621.
  • BAKHEET T, WILLIAMS BR, KHABAR KS: ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res. (2003) 31:421-423.
  • BAKHEET T, WILLIAMS BR, KHABAR KS: ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res. (2006) 34:D111-D114.
  • CHEN CY, SHYU AB: Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell Biol. (1994) 14:8471-8482.
  • GILLIS P, MALTER JS: The adenosine–uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine, and oncogene mRNAs. J. Biol. Chem. (1991) 266:3172-3177.
  • STOECKLIN G, LU M, RATTENBACHER B et al.: A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Mol. Cell Biol. (2003) 23:3506-3515.
  • PASCHOUD S, DOGAR AM, KUNTZ C et al.: Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol. Cell Biol. (2006) 26:8228-8241.
  • JING Q, HUANG S, GUTH S et al.: Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell (2005) 120:623-634.
  • FIALCOWITZ EJ, BREWER BY, KEENAN BP et al.: A hairpin-like structure within an AU-rich mRNA-destabilizing element regulates trans-factor binding selectivity and mRNA decay kinetics. J. Biol. Chem. (2005) 280:22406-22417.
  • ZHANG T, KRUYS V, HUEZ G et al.: AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem. Soc. Trans. (2002) 30:952-958.
  • MUKHOPADHYAY D, HOUCHEN CW, KENNEDY S et al.: Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol. Cell (2003) 11:113-126.
  • SCHIAVI SC, WELLINGTON CL, SHYU AB et al.: Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J. Biol. Chem. (1994) 269:3441-3448.
  • GROSSET C, CHEN CY, XU N et al.: A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell (2000) 103:29-40.
  • CHEN CY, CHEN TM, SHYU AB: Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol. Cell Biol. (1994) 14:416-426.
  • BERNSTEIN PL, HERRICK DJ, PROKIPCAK RD et al.: Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. (1992) 6:642-654.
  • LEE CH, LEEDS P, ROSS J: Purification and characterization of a polysome-associated endoribonuclease that degrades c-myc mRNA in vitro. J. Biol. Chem. (1998) 273:25261-25271.
  • SPARANESE D, LEE CH: CRD-BP shields c-myc and MDR-1 RNA from endonucleolytic attack by a mammalian endoribonuclease. Nucleic Acids Res. (2007) 35:1209-1221.
  • LEMM I, ROSS J: Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol. Cell Biol. (2002) 22:3959-3969.
  • JONES TR, COLE MD: Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3′ untranslated sequences. Mol. Cell Biol. (1987) 7:4513-4521.
  • KEENE JD, TENENBAUM SA: Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell (2002) 9:1161-1167.
  • BLACKSHEAR PJ: Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans. (2002) 30:945-952.
  • HUDSON BP, MARTINEZ-YAMOUT MA, DYSON HJ, WRIGHT PE: Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. (2004) 11:257-264.
  • TAYLOR GA, CARBALLO E, LEE DM et al.: A pathogenetic role for TNF-α in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity (1996) 4:445-454.
  • CARBALLO E, LAI WS, BLACKSHEAR PJ: Feedback inhibition of macrophage TNF-α production by tristetraprolin. Science (1998) 281:1001-1005.
  • LAI WS, CARBALLO E, THORN JM et al.: Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to AU-rich elements and destabilization of mRNA. J. Biol. Chem. (2000) 275:17827-17837.
  • STOECKLIN G, COLOMBI M, RAINERI I et al.: Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover. EMBO J. (2002) 21:4709-4718.
  • FRANKS TM, LYKKE-ANDERSEN J: TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev. (2007) 21:719-735.
  • RAINERI I, WEGMUELLER D, GROSS B et al.: Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res. (2004) 32:1279-1288.
  • SARKAR B, XI Q, HE C et al.: Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Mol. Cell Biol. (2003) 23:6685-6693.
  • CHEN CY, GHERZI R, ONG SE et al.: AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell (2001) 107:451-464.
  • GOUBLE A, GRAZIDE S, MEGGETTO F et al.: A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res. (2002) 62:1489-1495.
  • GHERZI R, LEE KY, BRIATA P et al.: A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell (2004) 14:571-583.
  • TRAN H, SCHILLING M, WIRBELAUER C et al.: Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol. Cell (2004) 13:101-111.
  • PAILLARD L, LEGAGNEUX V, MANIEY D et al.: c-Jun ARE targets mRNA deadenylation by an EDEN-BP (embryo deadenylation element-binding protein)-dependent pathway. J. Biol. Chem. (2002) 277:3232-3235.
  • DONNINI M, LAPUCCI A, PAPUCCI L et al.: Identification of TINO: a new evolutionarily conserved BCL-2 AU-rich element RNA-binding protein. J. Biol. Chem. (2004) 279:20154-20166.
  • FAN XC, STEITZ JA: Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. (1998) 17:3448-3460.
  • ZHU H, ZHOU HL, HASMAN RA et al.: Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J. Biol. Chem. (2007) 282:2203-2210.
  • MEISNER NC, HACKERMULLER J, UHL V et al.: mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. Chembiochem (2004) 5:1432-1447.
  • DEAN JL, WAIT R, MAHTANI KR et al.: The 3′ untranslated region of TNF-α mRNA is a target of the mRNA-stabilizing factor HuR. Mol. Cell Biol. (2001) 21:721-730.
  • MING XF, STOECKLIN G, LU M et al.: Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol. Cell Biol. (2001) 21:5778-5789.
  • AKOOL EL-S, KLEINERT H, HAMADA FM et al.: Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol. Cell Biol. (2003) 23:4901-4916.
  • WANG W, CALDWELL MC, LIN S et al.: HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. (2000) 19:2340-2350.
  • PENG Y, SCHOENBERG DR: c-Src activates endonuclease-mediated mRNA decay. Mol. Cell. (2007) 25:779-787.
  • LIU H, KILEDJIAN M: Decapping the message: a beginning or an end. Biochem. Soc. Trans. (2006) 34:35-38.
  • LIU Q, GREIMANN JC, LIMA CD: Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell (2006) 127:1223-1237.
  • HE F, LI X, SPATRICK P et al.: Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol. Cell (2003) 12:1439-1452.
  • STOECKLIN G, MAYO T, ANDERSON P: ARE-mRNA degradation requires the 5′ – 3′ decay pathway. EMBO Rep. (2006) 7:72-77.
  • MURRAY EL, SCHOENBERG DR: A + U-rich instability elements differentially activate 5′ – 3′ and 3′ – 5′ mRNA decay. Mol. Cell Biol. (2007) 27:2791-2799.
  • BHATTACHARYYA SN, HABERMACHER R, MARTINE U, CLOSS EI, FILIPOWICZ W: Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell (2006) 125:1111-1124.
  • CHRESTENSEN CA, SCHROEDER MJ, SHABANOWITZ J et al.: MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J. Biol. Chem. (2004) 279:10176-10184.
  • HITTI E, IAKOVLEVA T, BROOK M et al.: Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell Biol. (2006) 26:2399-2407.
  • BROOK M, TCHEN CR, SANTALUCIA T et al.: Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol. Cell Biol. (2006) 26:2408-2418.
  • STOECKLIN G, STUBBS T, KEDERSHA N et al.: MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. (2004) 23:1313-1324.
  • BRIATA P, FORCALES SV, PONASSI M et al.: p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell (2005) 20:891-903.
  • SCHMIDLIN M, LU M, LEUENBERGER SA et al.: The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J. (2004) 23:4760-4769.
  • BENJAMIN D, SCHMIDLIN M, MIN L et al.: BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell Biol. (2006) 26:9497-9507.
  • EBERHARDT W, DOLLER A, AKOOL EL-S et al.: Modulation of mRNA stability as a novel therapeutic approach. Pharmacol. Ther. (2007) 114:56-73.
  • WILSON GM, LU J, SUTPHEN K et al.: Phosphorylation of p40AUF1 regulates binding to A + U-rich mRNA-destabilizing elements and protein-induced changes in ribonucleoprotein structure. J. Biol. Chem. (2003) 278:33039-33048.
  • WILSON GM, LU J, SUTPHEN K et al.: Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J. Biol. Chem. (2003) 278:33029-33038.
  • LAROIA G, CUESTA R, BREWER G et al.: Control of mRNA decay by heat shock-ubiquitin–proteasome pathway. Science (1999) 284:499-502.
  • SHEN ZJ, ESNAULT S, MALTER JS: The peptidyl–prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat. Immunol. (2005) 6:1280-1287.
  • NAIR AP, HAHN S, BANHOLZER R, HIRSCH HH, MORONI C: Cyclosporin A inhibits growth of autocrine tumour cell lines by destabilizing interleukin-3 mRNA. Nature (1994) 369:239-242.
  • BANHOLZER R, NAIR AP, HIRSCH HH, MING XF, MORONI C: Rapamycin destabilizes interleukin-3 mRNA in autocrine tumor cells by a mechanism requiring an intact 3′ untranslated region. Mol. Cell Biol. (1997) 17:3254-3260.
  • SEKO Y, COLE S, KASPRZAK W, SHAPIRO BA et al.: The role of cytokine mRNA stability in the pathogenesis of autoimmune disease. Autoimmun. Rev. (2006) 5:299-305.
  • PIECHACZYK M, YANG JQ, BLANCHARD JM et al.: Posttranscriptional mechanisms are responsible for accumulation of truncated c-myc RNAs in murine plasma cell tumors. Cell (1985) 42:589-597.
  • TREISMAN R: Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell (1985) 42:889-902.
  • KABNICK KS, HOUSMAN DE: Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell Biol. (1988) 8:3244-3250.
  • SHYU AB, GREENBERG ME, BELASCO JG: The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. (1989) 3:60-72.
  • SHYU AB, BELASCO JG, GREENBERG ME: Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. (1991) 5:221-231.
  • MEIJLINK F, CURRAN T, MILLER AD: Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. Proc. Natl. Acad. Sci. USA (1985) 82:4987-4991.
  • RUTHER U, GARBER C, KOMITOWSKI D et al.: Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature (1987) 325:412-416.
  • WEISSTEIN JS, MAJESKA RJ, KLEIN MJ et al.: Detection of c-fos expression in benign and malignant musculoskeletal lesions, J. Orthop. Res. (2001) 19:339-345.
  • CURRAN T, PETERS G, VAN BEVEREN C, TEICH NM, VERMA IM: FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J. Virol. (1982) 44:674-682.
  • BLANCATO J, SINGH B, LIU A et al.: Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br. J. Cancer. (2004) 90:1612-1161.
  • SIKORA K, CHAN S, EVAN G et al.: c-myc oncogene expression in colorectal cancer. Cancer (1987) 59:1289-1295.
  • AGHIB DF, BISHOP JM, OTTOLENGHI S et al.: A 3′ truncation of MYC caused by chromosomal translocation in a human T-cell leukemia increases mRNA stability. Oncogene (1990) 5:707-711.
  • AGHIB DF, BISHOP JM: A 3′ truncation of myc caused by chromosomal translocation in a human T-cell leukemia is tumorigenic when tested in established rat fibroblasts. Oncogene (1991) 6:2371-2375.
  • HOLLIS GF, GAZDAR AF, BERTNESS V et al.: Complex translocation disrupts c-myc regulation in a human plasma cell myeloma. Mol. Cell Biol. (1988) 8:124-129.
  • LANGA F, LAFON I, VANDORMAEL-POURNIN S et al.: Healthy mice with an altered c-myc gene: role of the 3′ untranslated region revisited. Oncogene (2001) 20:4344-4353.
  • KEYOMARSI K, PARDEE AB: Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc. Natl. Acad. Sci. USA (1993) 90:1112-1116.
  • MAITY A, MCKENNA WG, MUSCHEL RJ: Cyclin A message stability varies with the cell cycle. Cell Growth Differ. (1997) 8:311-318.
  • MAITY A, MCKENNA WG, MUSCHEL RJ: Evidence for posttranscriptional regulation of cyclin B1 mRNA in the cell cycle and following irradiation in HeLa cells. EMBO J. (1995) 14:603-609.
  • WITHERS DA, HARVEY RC, FAUST JB et al.: Characterization of a candidate bcl-1 gene. Mol. Cell Biol. (1991) 11:4846-4853.
  • HOSOKAWA Y, JOH T, MAEDA Y et al.: Cyclin D1/PRAD1/BCL-1 alternative transcript (B) protein product in B-lymphoid malignancies with t(11;14)(q13;q32) translocation. Int. J. Cancer. (1999) 81:616-619.
  • RIMOKH R, BERGER F, BASTARD C et al.: Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle-cell lymphomas and t(11q13)-associated leukemias. Blood (1994) 83:3689-3696.
  • WIESTNER A, TEHRANI M, CHIORAZZI M et al.: Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood (2007) 109:4599-4606.
  • LAL A, MAZAN-MAMCZARZ K, KAWAI T et al.: Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J. (2004) 23:3092-3102.
  • MARDEROSIAN M, SHARMA A, FUNK AP et al.: Tristetraprolin regulates cyclin D1 c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene (2006) 25:6277-6290.
  • SHIOHARA M, AKASHI M, GOMBART AF et al.: TNF-α: posttranscriptional stabilization of WAF1 mRNA in p53-deficient human leukemic cells. J. Cell Physiol. (1996) 166:568-576.
  • WANG W, FURNEAUX H, CHENG H et al.: HuR regulates p21 mRNA stabilization by UV light. Mol. Cell Biol. (2000) 20:760-769.
  • GILES KM, DALY JM, BEVERIDGE DJ et al.: The 3′-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J. Biol. Chem. (2003) 278:2937-2946.
  • YANG X, WANG W, FAN J et al.: Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. J. Biol. Chem. (2004) 279:49298-49306.
  • BERRA E, PAGES G, POUYSSEGUR J: MAP kinases and hypoxia in the control of VEGF expression. Cancer Metast. Rev. (2000) 19:139-145.
  • GOLDBERG-COHEN I, FURNEAUXB H, LEVY AP: A 40-bp RNA element that mediates stabilization of vascular endothelial growth factor mRNA by HuR. J. Biol. Chem. (2002) 277:13635-13640.
  • CIAIS D, CHERRADI N, BAILLY S et al.: Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene (2004) 23:8673-8680.
  • BELL SE, SANCHEZ MJ, SPASIC-BOSKOVIC O et al.: The RNA binding protein Zfp36l1 is required for normal vascularisation and posttranscriptionally regulates VEGF expression. Dev. Dyn. (2006) 235:3144-3155.
  • NABORS LB, GILLESPIE GY, HARKINS L et al.: HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res. (2001) 61:215421-215461.
  • DIXON DA, TOLLEY ND, KING PH et al.: Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J. Clin. Invest. (2001) 108:1657-1665.
  • SHI H, XU JM, HU NZ et al.: Prognostic significance of expression of cyclooxygenase-2 and vascular endothelial growth factor in human gastric carcinoma. World J. Gastroenterol. (2003) 9:1421-1426.
  • ERKINHEIMO TL, LASSUS H, SIVULA A et al.: Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Res. (2003) 63:7591-7594.
  • DENKERT C, WEICHERT W, WINZER KJ et al.: Expression of the ELAV-like protein HuR is associated with higher tumor grade and increased cyclooxygenase-2 expression in human breast carcinoma. Clin Cancer Res. (2004) 10:5580-5586.
  • OTAKE Y, SENGUPTA TK, BANDYOPADHYAY S et al.: Drug-induced destabilization of bcl-2 mRNA: a new approach for inducing apoptosis in tumor cells. Curr. Opin Investig. Drugs (2004) 5:616-622.
  • RIORDAN FA, FORONI L, HOFFBRAND AV et al.: Okadaic acid-induced apoptosis of HL60 leukemia cells is preceded by destabilization of bcl-2 mRNA and downregulation of bcl-2 protein. FEBS Lett. (1998) 435:195-198.
  • SENGUPTA TK, BANDYOPADHYAY S, FERNANDES DJ et al.: Identification of nucleolin as an AU-rich element binding protein involved in bcl-2 RNA stabilization. J. Biol. Chem. (2004) 279:10855-10863.
  • NAIR AP, HIRSCH HH, MORONI C: Mast cells sensitive to v-H-ras transformation are hyperinducible for interleukin 3 expression and have lost tumor-suppressor activity. Oncogene (1992) 7:1963-1972.
  • HIRSCH HH, NAIR AP, BACKENSTOSS V, MORONI C: Interleukin-3 mRNA stabilization by a trans-acting mechanism in autocrine tumors lacking interleukin-3 gene rearrangements. J. Biol. Chem. (1995) 270:20629-20635.
  • WODNAR-FILIPOWICZ A, MORONI C: Regulation of interleukin 3 mRNA expression in mast cells occurs at the posttranscriptional level and is mediated by calcium ions. Proc. Natl. Acad. Sci. USA (1990) 87:777-781.
  • MING XF, KAISER M, MORONI C: c-jun N-terminal kinase is involved in AUUUA- mediated interleukin-3 mRNA turnover in mast cells. EMBO J. (1998) 17:6039-6048.
  • DIAMANTIS ID, NAIR AP, HIRSCH HH, MORONI C: Tumor suppression involves down-regulation of interleukin 3 expression in hybrids between autocrine mastocytoma and interleukin 3-dependent parental mast cells. Proc. Natl. Acad. Sci. USA (1989) 86:9299-9302.
  • STOECKLIN G, GROSS B, MING XF et al.: A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene (2003) 22:3554-3561.
  • BRIATA P, ILENGO C, CORTE G et al.: The Wnt/β-catenin⟶Pitx2 pathway controls the turnover of Pitx2 and other unstable mRNAs. Mol. Cell (2003) 12:1201-1211.
  • WILLERT J, EPPING M, POLLACK JR et al.: A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. (2002) 2:8.
  • NOUBISSI FK, ELCHEVA I, BHATIA N et al.: CRD-BP mediates stabilization of betaTrCP1 and c-myc mRNA in response to β-catenin signalling. Nature (2006) 441:898-901.
  • DRING AM, DAVIES FE, FENTON JA et al.: A global expression-based analysis of the consequences of the t(4;14) translocation in myeloma. Clin. Cancer Res. (2004) 10:5692-5701.
  • POSPISILOVA H, BAENS M, MICHAUX L et al.: Interstitial del(14)(q) involving IGH: a novel recurrent aberration in B-NHL. Leukemia (2007) 21:2079-2083.
  • GODARD S, GETZ G, DELORENZI M et al.: Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res. (2003) 63:6613-6625.
  • JACKSON RS II, CHO YJ, LIANG P: TIS11D is a candidate pro-apoptotic p53 target gene. Cell Cycle (2006) 5:2889-2893.
  • DUFOURNY B, VAN TEEFFELEN HA, HAMELERS IH, SUSSENBACH JS, STEENBERGH PH: Stabilization of cyclin D1 mRNA via the phosphatidylinositol 3-kinase pathway in MCF-7 human breast cancer cells. J. Endocrinol. (2000) 166:329-338.
  • HASHEMOLHOSSEINI S, NAGAMINE Y, MORLEY SJ, DESRIVIERES S, MERCEP L, FERRARI S: Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J. Biol. Chem. (1998) 273:14424-14429.
  • YU Q, COK SJ, ZENG C et al.: Translational repression of human matrix metalloproteinases-13 by an alternatively spliced form of T-cell-restricted intracellular antigen-related protein (TIAR). J. Biol. Chem. (2003) 278:1579-1584.
  • ROSE-JOHN S, SCHOOLTINK H: Cytokines are a therapeutic target for the prevention of inflammation-induced cancers. Recent Results Cancer Res. (2007) 174:57-66.
  • BREWER G, SACCANI S, SARKAR S et al.: Increased interleukin-10 mRNA stability in melanoma cells is associated with decreased levels of A + U-rich element binding factor AUF1. J. Interferon Cytokine Res. (2003) 23:553-564.
  • STOECKLIN G, STOECKLE P, LU M et al.: Cellular mutants define a common mRNA degradation pathway targeting cytokine AU-rich elements. RNA (2001) 7:1578-1588.
  • FAWAL M, ARMSTRONG F, OLLIER S et al.: A “liaison dangereuse” between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK. Blood (2006) 108:2780-2788.
  • HAHN WC, COUNTER CM, LUNDBERG AS, BEIJERSBERGEN RL, BROOKS MW, WEINBERG RA: Creation of human tumour cells with defined genetic elements. Nature (1999) 400:464-468.
  • VLASOVA IA, MCNABB J, RAGHAVAN A et al.: Coordinate stabilization of growth-regulatory transcripts in T cell malignancies. Genomics (2005) 86:159-171.
  • RAGHAVAN A, DHALLA M, BAKHEET T et al.: Patterns of coordinate down-regulation of ARE-containing transcripts following immune cell activation. Genomics (2004) 84:1002-1013.
  • RAGHAVAN A, OGILVIE RL, REILLY C et al.: Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res. (2002) 30:5529-5538.
  • FREVEL MA, BAKHEET T, SILVA AM et al.: p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol. Cell Biol. (2003) 23:425-436.
  • AMIT I, CITRI A, SHAY T, LU Y, KATZ M, ZHANG F et al.: A module of negative feedback regulators defines growth factor signaling. Nat. Genet. (2007) 39:503-512.
  • TENENBAUM SA, LAGER PJ, CARSON CC et al.: Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods (2002) 26:191-198.
  • ZHANG B, PAN X, COBB GP, ANDERSON TA: MicroRNAs as oncogenes and tumor suppressors. Dev. Biol. (2007) 302:1-12.
  • STEINMAN RA: mRNA stability control: a clandestine force in normal and malignant hematopoiesis. Leukemia (2007) 21:1158-1171.
  • YUN H, LEE M, KIM SS, HA J: Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J. Biol. Chem. (2005) 280:9963-9972.
  • TRAN H, MAURER F, NAGAMINE Y: Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol. Cell Biol. (2003) 23:7177-7188.
  • CHEN CY, DEL GATTO-KONCZAK F, WU Z, KARIN M: Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science (1998) 280:1945-1949.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.