349
Views
23
CrossRef citations to date
0
Altmetric
Review

Adjuvants in vaccines and for immunisation: current trends

, , , &
Pages 1551-1562 | Published online: 05 Oct 2007

Bibliography

  • JANEWAY CA: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. (1989) 54(Part 1):1-13.
  • BARTON GM, MEDZHITOV R: Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol. (2002) 270:81-92.
  • FREUND J, CASALS J, PAGE-HOSMER E: Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc. Soc. Exp. Biol. Med. (1937) 37:509-513.
  • ULMER AJ, RIETSCHEL E, ZAHRINGHER U, HEINE H: Lipopolysaccharide: structure, bioactivity, receptors and signal transduction. Trends Glycosci. Glycotechnol. (2002) 14(76):53-68.
  • ISMAILI J, RENNESSON J, ASKOV E et al.: Monophosphoryl lipid A activates both human dendritic cells and T-cells. J. Immunol. (2002) 168:926-932.
  • JOHNSON DA, KEEGAN DS, SOWELL CG et al.: 3-O-desacyl monophosphoryl lipid A derivatives: synthesis and immunostimulant activities. J. Med. Chem. (1999) 42(22):4640-4649.
  • KRIEG AM: From A to Z on CpG. Trends Immunol. (2002) 23(2):64-65.
  • WAGNER H: Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol. (1999) 73:329-368.
  • HARTMANN G, WEERATNA RD, BALLAS ZK et al.: Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. (2000) 164(3):1617-1624.
  • CIAFRE' SA, RINALDI M, GASPARINI P et al.: Stability and functional effectiveness of phosphorothioate modified duplex DNA and synthetic ‘mini-genes’. Nucleic Acids Res. (1995) 23:4134-4142.
  • KLINMAN DM, BARNHART KM, CONOVER J: CpG motifs as immune adjuvants. Vaccine (1999) 17(1):19-25.
  • FELTQUATE DM, HEANEY S, WEBSTER RG, ROBINSON HL: Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. (1997) 158:2278-2284.
  • BARRY MA, JOHNSTON SA: Biological features of genetic immunization. Vaccine (1997) 15:788-791.
  • PEREZ O, BRACHO G, LASTRE M et al.: Proteoliposome-derived Cochleate as an immunomodulator for nasal vaccine. Vaccine (2006) 24(Suppl. 2):S2/52-S2/53.
  • RODRIGUEZ T, PEREZ O, UGRINOVIC S, BRACHO G, MASTROENI P: Bacterial derived proteoliposomes as ideal delivery system and cellular adjuvants. Vaccine (2006) 24(Suppl. 2):S2/24-S2/25.
  • DEL CAMPO J, LASTRE M, BRACHO G et al.: Immunological evaluation of bacterial Cochleate and proteoliposome as mucosal adjuvants. Vaccine (2006) 24(Suppl. 2):S2/50-S2/51.
  • HERBERT WJ: Antigenicity of soluble protein in the presence of high levels of antibody: a possible mode of action of the antigen adjuvants. Nature (1966) 210(5037):747-748.
  • HERBERT WJ: The mode of action of mineral oil emulsion adjuvants on antibody production in mice. Immunology (1968) 14:301-318.
  • PASHINE A, VALIANTE NM, ULMER JB: Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. (2005) 11:S63-S68.
  • Bramwell VW, Perry Y: Particulate delivery systems for vaccine. Crit. Rev. Ther. Drug Carrier Syst. (2005) 22:151-214.
  • KENNEY RT, EDELMAN R: Survey of human-use adjuvants. Expert Rev. Vaccines (2003) 2(2):167-188.
  • ULMER JB, DEWITT CM, CHASTAIN M et al.: Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine (1999) 18(1-2):18-28.
  • GALLUCCI S, LOLKERNA M, MATZINGER P: Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. (1999) 5:1249-1252.
  • MCMAHON JM, SIGNORI E, WELLS KE, FAZIO VM, WELLS DJ: Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase increased expression with reduced muscle damage. Gene Ther. (2001) 8(16):1264-1270.
  • GALLUCCI S, MATZINGER P: Danger signals: SOS to the immune system. Curr. Opin. Immunol. (2001) 13(1):114-119.
  • BABIUK S, BACA-ESTRADA ME, FOLDVARI M et al.: Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol. (2004) 110(1):1-10.
  • PASTER W, ZEHETNER M, KALAT M, SCHULLER S, SCHWEIGHOFFER T: In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses. Gene Ther. (2003) 10:717-724.
  • MCMAHON JM, WELLS KE, BAMFO JE, CARTWRIGHT MA, WELLS DJ: Inflammatory responses following direct injection of plasmid DNA into skeletal muscle. Gene Ther. (1998) 5:1283-1290.
  • JACOBSEN NE, FAIRBROTHER WJ, KENSIL CR et al.: Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr. Res. (1996) 280:1-14.
  • MOORE A, McCARTHY L, MILLS KH: The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a soluble recombinant HIV protein from Th2 to Th1. Vaccine (1999) 17:2517-2527.
  • MARCIANI DJ, REYNOLDS RC, PATHAK AK et al.: Fractionation, structural studies and immunological characterization of the semisynthetic quillaja saponis derivative GP-0100. Vaccine (2003) 21:3961-3971.
  • MERALDI V, AUDRAN R, ROMERO JF et al.: OM-174, a new adjuvant with a potential for human use, induces a protective response when administered with the synthetic C-terminal fragment 242 – 310 from the circumsporozoite protein of Plasmodium berghei. Vaccine (2003) 21:2485-2491.
  • AUDRAN R, CORRADIN G, DRUILHE P et al.: Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect. Immun. (2005) 73:8017-8026.
  • BALLARD JD, COLLIER RJ, STARNBACH MN: Antrax toxin-mediated delivery of a cytotoxic T-cell epitope in vivo. Proc. Natl. Acad. Sci. USA (1996) 93(22):12531-12534.
  • CARBONETTI NH, IRISH TJ, CHEN CH et al.: Intracellular delivery of a cytolytic T-lymphocyte epitope peptide by pertussis toxin to major histocompatibility complex class I without involvement of the cytosolic class I antigen processing pathway. Infect. Immun. (1999) 67:602-607.
  • STEVENSON FK, RICE J, OTTENSMEIER CH, THIRDBOROUGH SM, ZHU D: DNA fusion vaccine against cancer: from the laboratory to the clinic. Immunol. Rev. (2004) 199:156-180.
  • KHAN CMA, VILLAREAL-RAMOS B, PIERCE RJ et al.: Construction, expression and immunogenicity of the Schistosoma mansoni P28 glutathione S-transferase as agenetic fusion to tetanus toxin fragment C in a live Aro attenuated vaccine strain of Salmonella. Proc. Natl. Acad. Sci. USA (1994) 91:11261-11265.
  • KHAN CMA, VILLAREAL-RAMOS B, PIERCE RJ et al.: Construction, expression and immunogenicity of multiple tandem copies of the Schistosoma mansoni peptide comprising amino acids 115 – 131 of the P28 glutathione S-transferase, expressed as C-terminal fusions to tetanus toxin fragment C in a live Aro attenuated vaccine strain of Salmonella. J. Immunol. (1994) 153:5634-5642.
  • RICE J, BUCHAN S, STEVENSON FK: Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumour antigen. J. Immunol. (2002) 169:3908-3913.
  • KING CA, SPELLBERG MB, ZHU D et al.: DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat. Med. (1998) (11):1281-1286.
  • UMLAND TC, WINGERT LM, SWAMINATHAN S, FUREY WF, SCHMIDT JJ, SAX M: Structure of the receptor binding fragment HC of tetanus neurotoxin. Nat. Struct. Biol. (1997) 4:788-792.
  • PANINA-BORDIGNON, TAN A, TERMIJTELEN A, DEMOTZ S, CORRADIN G, LANZAVECCHIA A: Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur. J. Immunol. (1989) 19(12):2237-2242.
  • SPELLERBERG MB, ZHU D, THOMPSETT A, KING CA, HAMBLIN TJ, STEVENSON FK: DNA vaccines against lymphoma: promotion of anti-idiotypic antibody responses induced by single chain Fv genes by fusion to tetanus toxin fragment C. J. Immunol. (1997) 159(4):1885-1892.
  • RICE J, ELLIOTT T, BUCHAN S, STEVENSON FK: DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J. Immunol. (2001) 167:1558-1565.
  • FALUGI F, PETRACCA R, MARIANI M et al.: Rationally designed strings of promiscuous CD4(+) T cell epitopes provide help to Haemophilus influenzae type B oligosaccharide: a model for new conjugate vaccines. Eur. J. Immunol. (2001) 31:3816-3824.
  • DEMOTZ S, BARBEY C, CORRADIN G, AMOROSO A, LANZAVECCHIA A: The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. Eur. J. Immunol. (1993) 23:425-432.
  • HO PC, MUTCH DA, WINKEL KD et al.: Identification of two promiscuous T cell epitopes from tetanus toxin. Eur. J. Immunol. (1990) 20:477-483.
  • BARALDO K, MORI E, BARTOLONI A et al.: N19 polyepitope as a carrier for enhanced immunogenicity and protective efficacy of meningococcal conjugate vaccines. Infect. Immun. (2004) 72(8):4884-4887.
  • BARALDO K, MORI E, BARTOLONI A et al.: Combined conjugate vaccines: enhanced immunogenicity with the N19 polyepitope as a carrier protein. Infect. Immun. (2005) 73(9):5835-5841.
  • ALEXANDER J, OSEROFF C, DAHBELRG C et al.: A decaepitope polypeptide primes for multiple CD8+ IFN-γ and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery. J. Immunol. (2002) 168:6189-6198.
  • ISHIOKA GY, FIKES J, HERMANSON G et al.: Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes. J. Immunol. (1999) 162:3915-3925.
  • WIDMANN C, ROMERO P, MARYANSKI JL, CORRADIN G, VALMORI D: T-helper epitopes enhance the cytotoxic response of mice immunized with MHC class I-restricted malaria peptides. J. Immunol. Methods (1992) 155: 95-99.
  • TYMCIU S, DURIEUX-ALEXANDRENNE C, WIJKHUISEN A et al.: Enhancement of antibody responses in DNA vaccination using a vector encoding a universal T-helper cell epitope. DNA cell Biol. (2004) 23(6):395-402.
  • ASTORI M, KRAEHENBUHL JP: Recombinant fusion peptides containing single or multiple repeats of a ubiquitous T-helper epitope are highly immunogenic. Mol. Immunol. (1996) 33(13):1017-1024.
  • ALEXANDER J, SIDNEY J, SOUTHWOOD S et al.: Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity (1994) 1(9):751-761.
  • ALEXANDER J, DEL GUERCIO MF, MAEWAL A et al.: Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. J. Immunol. (2000) 164:1625-1633.
  • FRANKE ED, HOFFMAN SL, SACCI JB et al.: Pan DR binding sequence provides T-cell help for induction of protective antibodies against Plasmodium yoelii sporozoites. Vaccine (1999) 17:1201-1205.
  • DEL GUERCIO MF, ALEXANDER J, KUBO RT et al.: Potent immunogenic short linear peptide constructs composed of B cell epitopes and Pan DR T helper epitopes (PADRE) for antibody responses in vivo. Vaccine (1997) 15(4):441-448.
  • SETTE A, BUUS S, COLON S, SMITH JA, MILES C, GREY HM: Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature (1987) 328:395-399.
  • CIAFRE' SA, RINALDI M, VESPIGNANI I et al.: A plasmid family containing two different expression cassettes suitable for immunomodulation and genetic immunization. Plasmid (1998) 40:84-89.
  • GOOD MF, POMBO D, LUNDE MN et al.: Recombinant human interleukin-2 (IL-2) overcomes genetic nonresponsiveness to malaria sporozoite peptides. Correlation and effect with biological activity. J. Immunol. (1988) 141:972-977.
  • RINALDI M, RIA F, PARRELLA P et al.: Antibodies elicited by naked DNA vaccination against the complementary-determining region 3 hypervariable region of immunoglobulin heavy chain idiotypic determinants of B-lymphoproliferative disorders specifically react with patients' tumor cells. Cancer Res. (2001) 61-64:1555-1562.
  • ROSENBERG SA, YANG JC, SCHWARTZENTRUBER DJ et al.: Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. (1998) 4:321-327.
  • BAROUCH DH, SANTRA S, STEENBEKE TD et al.: Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J. Immunol. (1998) 161(4):1875-1882.
  • SETOGUCHI R, HORI S, TAKAHASHI T, SAKAGUCHI S: Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. (2005) 201:723-735.
  • BAYER AL, YU A, ADEEGBE D, MALEK TR: Essential role for interleukin-2 for CD4(+)CD25(+) T regulatory cell development during the neonatal period. J. Exp. Med. (2005) 201(5):769-777.
  • ATKINS MB, ROBERTSON MJ, GORDON M et al.: Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. (1997) 3(3):409-417.
  • GOLLOB JA, MIER JW, VEENSTRA K: Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin. Cancer Res. (2000) 6(5):1678-1694.
  • HADDAD D, RAMPRAKASH J, SEDEGAH M: Plasmid vaccine expressing granulocyte-macrophage colony-stimulating factor attracts infiltrates including immature dendritic cells into injected muscles. J. Immunol. (2000) 165(7):3772-3781.
  • BAROUCH DH, SANTRA S, TENNER-RACZ K: Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J. Immunol. (2002) 168(2):562-568.
  • DRANOFF G, JAFFEE E, LAZENBY A et al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA (1993) 90(8):3539-3543.
  • DISIS ML, BERNHARD H, SHIOTA FM et al.: Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood (1996) 88:202-210.
  • FU XY, WATSON G, JIMENEZ JJ et al.: Expansion of immunoregulatory macrophages by granulocyte-macrophage colony-stimulating factor derived from a mammary tumor. Cancer Res. (1990) 50:227-234.
  • OWEN JL, LOPEZ DM, GROSSO JF et al.: The expression of CCL2 by T lymphocytes of mammary tumor bearers: role of tumor derived factors. Cell Immunol. (2005) 235:122-135.
  • SUMIDA SM, MCKAY PF, TRUITT DM et al.: Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J. Clin. Invest. (2004) 114(9):1334-1342.
  • LYNCH DH, ANDREASEN A, MARASKOVSKY E, WHITMORE J, MILLER RE, SCHUH JC: Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat. Med. (1997) 3:625-631.
  • CHEN K, BRAUN S, LYMAN S et al.: Antitumour activity and immunotherapeutic properties of Flt-3 ligand in a murine breast cancer model. Cancer Res. (1997) 57(16):3511-3516.
  • SHIMAO K, TAKAYAMA T, ENOMOTO K et al.: Cancer gene therapy using in vivo electroporation of Flt3-ligand. Int. J. Oncol. (2005) 2:457-463.
  • PERON JM, ESCHE C, SUBBOTIN VM, MALISZEWSKI C, LOTZE MT, SHURIN MR: FLT3-ligand administration inhibits liver metastases: role of NK cells. J. Immunol. (1998) 161:6164-6170.
  • LEHRER RI, BARTO A, DAHER KA, HARWIG SS, GANZ T, SELSTED ME: Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. (1989) 84(2):553-561.
  • YANG D, CHERTOV O, BYKOVSKAIA SN et al.: β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science (1999) 286:525-528.
  • NIYONSABA F, OGAWA H, NAGAOKA I: Human β-defensin-2 functions as chemotactic agent for TNF-α treated human neutrophils. Immunology (2004) 111:273-281.
  • BIRAGYN A, SURENHU M, YANG D et al.: Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. (2001) 167:6644-6653.
  • LILLARD JW Jr, BOYAKA PN, CHERTOV O, OPPENHEIM JJ, MCGHEE JR: Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. USA (1999) 96:651-656.
  • DONALD CD, SUN CQ, LIM SD et al.: Cancer-specific loss of β-defenisn 1 in renal and prostatic carcinomas. Lab. Invest. (2003) 83:501-505.
  • NIYONSABA F, USHIO H, NAGAOKA I, OKUMURA K, OGAWA H: The human β-defensins (-1,-2,-3,-4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J. Immuno.l. (2005) 175:1776-1784.
  • YANG D, BIRAGYN A, HOOVER DM, LUBKOWSKI J, OPPENHEIM JJ: Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. (2004) 22:181-215.
  • BROGDEN KA, HEIDARI M, SACCO RE et al.: Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol. Immunol. (2003) 18:95-99.
  • TANI K, MURPHY WJ, CHERTOV O et al.: Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int. Immunol. (2000) 12:691-700.
  • JEGO G, PALUCKA AK, BLANCK JP, CHALOUNI C, PASCUAL V, BANCHEREAU J: Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity (2003) 19:225-234.
  • TOVEY MG, LALLEMAND C, MERITET JF, MAURY C: Adjuvant activity of interferon α: mechanism(s) of action. Vaccine (2006) 24(Suppl. 2):S2/46-S2/47.
  • OKADA H, TSUGAWA T, SATO H et al.: Delivery of interferon-α transfected dendritic cells into central nervous system tumours enhances the antitumor efficacy of peripheral peptide-based vaccines. Cancer Res. (2004) 64:5830-5838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.