116
Views
13
CrossRef citations to date
0
Altmetric
Review

The potential of topical DNA vaccines adjuvanted by cytokines

, &
Pages 1563-1574 | Published online: 05 Oct 2007

Bibliography

  • GIRI M, UGEN KE, WEINER DB: DNA vaccines against human immunodeficiency virus type 1 in the past decade. Clin. Microbiol. Rev. (2004) 17(2):370-389.
  • RAZ E, CARSON DA, PARKER SE et al.: Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc. Natl. Acad. Sci. USA (1994) 91(20):9519-9523.
  • TANG DC, SHI Z, CURIEL DT: Vaccination onto bare skin. Nature (1997) 388(6644):729-730.
  • FAN H, LIN Q, MORRISSEY GR, KHAVARI PA: Immunization via hair follicles by topical application of naked DNA to normal skin. Nat. Biotechnol. (1999) 17(9):870-872.
  • WATABE S, XIN KQ, IHATA A et al.: Protection against influenza virus challenge by topical application of influenza DNA vaccine. Vaccine (2001) 19(31):4434-4444.
  • LIU LJ, WATABE S, YANG J et al.: Topical application of HIV DNA vaccine with cytokine-expression plasmids induces strong antigen-specific immune responses. Vaccine (2001) 20(1-2):42-48.
  • LIN MT, PULKKINEN L, UITTO J, YOON K: The gene gun: current applications in cutaneous gene therapy. Int. J. Dermatol. (2000) 39(3):161-170.
  • KENDALL M, MITCHELL T, WRIGHTON-SMITH P: Intradermal ballistic delivery of micro-particles into excised human skin for pharmaceutical applications. J. Biomech. (2004) 37(11):1733-1741.
  • WIDERA G, AUSTIN M, RABUSSAY D et al.: Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. (2000) 164(9):4635-4640.
  • BABIUK S, BACA-ESTRADA ME, FOLDVARI M et al.: Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol. (2004) 110(1):1-10.
  • MIKSZTA JA, ALARCON JB, BRITTINGHAM JM, SUTTER DE, PETTIS RJ, HARVEY NG: Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. (2002) 8(4):415-419.
  • PRAUSNITZ MR: Microneedles for transdermal drug delivery. Adv. Drug. Deliv. Rev. (2004) 56(5):581-587.
  • COULMAN SA, BARROW D, ANSTEY A et al.: Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Curr. Drug Deliv. (2006) 3(1):65-75.
  • LISZIEWICZ J, GABRILOVICH DI, VARGA G et al.: Induction of potent human immunodeficiency virus type 1-specific T-cell-restricted immunity by genetically modified dendritic cells. J. Virol. (2001) 75(16):7621-7628.
  • LORI F, KELLY LM, LISZIEWICZ J: APC-targeted immunization for the treatment of HIV-1. Expert Rev. Vaccines (2004) 3(4 Suppl.):S189-S198.
  • LISZIEWICZ J, TROCIO J, WHITMAN L et al.: DermaVir: a novel topical vaccine for HIV/AIDS. J. Invest. Dermatol. (2005) 124(1):160-169.
  • LORI F, TROCIO J, BAKARE N, KELLY LM, LISZIEWICZ J: DermaVir, a novel HIV immunisation technology. Vaccine (2005) 23(17-18):2030-2034.
  • CONDON C, WATKINS SC, CELLUZZI CM, THOMPSON K, FALO LD Jr: DNA-based immunization by in vivo transfection of dendritic cells. Nat. Med. (1996) 2(10):1122-1128.
  • LARREGINA AT, WATKINS SC, ERDOS G et al.: Direct transfection and activation of human cutaneous dendritic cells. Gene Ther. (2001) 8(8):608-617.
  • TRIMBLE C, LIN CT, HUNG CF et al.: Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine (2003) 21(25-26):4036-4042.
  • PERTMER TM, EISENBRAUN MD, MCCABE D, PRAYAGA SK, FULLER DH, HAYNES JR: Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine (1995) 13(15):1427-1430.
  • ROY MJ, WU MS, BARR LJ et al.: Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine (2000) 19(7-8):764-778.
  • DUJARDIN N, VAN DER SMISSEN P, PREAT V: Topical gene transfer into rat skin using electroporation. Pharm. Res. (2001) 18(1):61-66.
  • BABIUK S, BACA-ESTRADA ME, FOLDVARI M et al.: Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. Mol. Ther. (2003) 8(6):992-998.
  • DRABICK JJ, GLASSPOOL-MALONE J, KING A, MALONE RW: Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther. (2001) 3(2):249-255.
  • ZHANG L, NOLAN E, KREITSCHITZ S, RABUSSAY DP: Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim. Biophys. Acta (2002) 1572(1):1-9.
  • HOOPER JW, GOLDEN JW, FERRO AM, KING AD: Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine (2007) 25(10):1814-1823.
  • BACHY M, BOUDET F, BUREAU M et al.: Electric pulses increase the immunogenicity of an influenza DNA vaccine injected intramuscularly in the mouse. Vaccine (2001) 19(13-14):1688-1693.
  • BABIUK S, BACA-ESTRADA ME, FOLDVARI M et al.: Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine (2002) 20(27-28):3399-3408.
  • OTTEN G, SCHAEFER M, DOE B et al.: Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine (2004) 22(19):2489-2493.
  • ZHAO YG, PENG B, DENG H et al.: Anti-HBV immune responses in rhesus macaques elicited by electroporation mediated DNA vaccination. Vaccine (2006) 24(7):897-903.
  • LISZIEWICZ J, TROCIO J, XU J et al.: Control of viral rebound through therapeutic immunization with DermaVir. AIDS (2005) 19(1):35-43.
  • LISZIEWICZ J, KELLY L, LORI F: Topical DermaVir vaccine targeting dendritic cells. Curr. Drug Deliv. (2006) 3(1):83-88.
  • CALAROTA SA, WEINER DB, LORI F, LISZIEWICZ J: Induction of HIV-specific memory T-cell responses by topical DermaVir vaccine. Vaccine (2007) 25(16):3070-3074.
  • Cristillo AD, Lisziewicz J, He L et al.: HIV-1 prophylactic vaccine comprised of topical DermaVir prime and protein boost elicits cellular immune responses and controls pathogenic R5 SHIV162P3. Virology (2007) 366(1):197-211.
  • CUMBERBATCH M, DEARMAN RJ, GRIFFITHS CE, KIMBER I: Langerhans cell migration. Clin. Exp. Dermatol. (2000) 25(5):413-418.
  • BABIUK S, BACA-ESTRADA M, BABIUK LA, EWEN C, FOLDVARI M: Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery. J. Control. Rel. (2000) 66(2-3):199-214.
  • LENZ A, HEINE M, SCHULER G, ROMANI N: Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J. Clin. Invest. (1993) 92(6):2587-2596.
  • STOECKLINGER A, GRIESHUBER I, SCHEIBLHOFER S et al.: Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. J. Immunol. (2007) 179(2):886-893.
  • KAECH SM, WHERRY EJ, AHMED R: Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. (2002) 2(4):251-262.
  • WHERRY EJ, TEICHGRABER V, BECKER TC et al.: Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. (2003) 4(3):225-234.
  • SALLUSTO F, GEGINAT J, LANZAVECCHIA A: Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. (2004) 22:745-763.
  • SCHMITZ JE, KURODA MJ, SANTRA S et al.: Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science (1999) 283(5403):857-860.
  • JIN X, BAUER DE, TUTTLETON SE et al.: Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. (1999) 189(6):991-998.
  • ROWLAND-JONES SL, DONG T, FOWKE KR et al.: Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J. Clin. Invest. (1998) 102(9):1758-1765.
  • KAUL R, DONG T, PLUMMER FA et al.: CD8(+) lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J. Clin. Invest. (2001) 107(10):1303-1310.
  • KAUL R, ROWLAND-JONES SL, KIMANI J et al.: Late seroconversion in HIV-resistant Nairobi prostitutes despite pre-existing HIV-specific CD8+ responses. J. Clin. Invest. (2001) 107(3):341-349.
  • CAO Y, QIN L, ZHANG L, SAFRIT J, HO DD: Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N. Engl. J. Med. (1995) 332(4):201-208.
  • PANTALEO G, MENZO S, VACCAREZZA M et al.: Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N. Engl. J. Med. (1995) 332(4):209-216.
  • BOUSSIF O, LEZOUALC'H F, ZANTA MA et al.: A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA (1995) 92(16):7297-7301.
  • BIEBER T, MEISSNER W, KOSTIN S, NIEMANN A, ELSASSER HP: Intracellular route and transcriptional competence of polyethylenimine–DNA complexes. J. Control. Rel. (2002) 82(2-3):441-454.
  • LABAT-MOLEUR F, STEFFAN AM, BRISSON C et al.: An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther. (1996) 3(11):1010-1017.
  • KAMIYA H, TSUCHIYA H, YAMAZAKI J, HARASHIMA H: Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv. Drug Deliv. Rev. (2001) 52(3):153-164.
  • FINZI D, BLANKSON J, SILICIANO JD et al.: Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. (1999) 5(5):512-517.
  • PITCHER CJ, QUITTNER C, PETERSON DM et al.: HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat. Med. (1999) 5(5):518-525.
  • ORENSTEIN JM, BHAT N, YODER C et al.: Rapid activation of lymph nodes and mononuclear cell HIV expression upon interrupting highly active antiretroviral therapy in patients after prolonged viral suppression. AIDS (2000) 14(12):1709-1715.
  • LETVIN NL, MASCOLA JR, SUN Y et al.: Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science (2006) 312(5779):1530-1533.
  • MATTAPALLIL JJ, DOUEK DC, BUCKLER-WHITE A et al.: Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J. Exp. Med. (2006) 203(6):1533-1541.
  • VACCARI M, TRINDADE CJ, VENZON D, ZANETTI M, FRANCHINI G: Vaccine-induced CD8+ central memory T cells in protection from simian AIDS. J. Immunol. (2005) 175(6):3502-3507.
  • OZAKI T, YAUCHI M, XIN KQ, HIRAHARA F, OKUDA K: Cross-reactive protection against influenza A virus by a topical applied DNA vaccine encoding M gene with adjuvant. Viral Immunol. (2005) 18(2):373-380.
  • CALAROTA SA, WEINER DB: Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol. Rev. (2004) 199:84-99.
  • BAROUCH DH, LETVIN NL, SEDER RA: The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunol. Rev. (2004) 202:266-274.
  • CHABALGOITY JA, BAZ A, RIAL A, GRILLE S: The relevance of cytokines for development of protective immunity and rational design of vaccines. Cytokine Growth Factor Rev. (2007) 18(1-2):195-207.
  • SCHEULE RK: The role of CpG motifs in immunostimulation and gene therapy. Adv. Drug Deliv. Rev. (2000) 44(2-3):119-134.
  • BERRY LJ, HICKEY DK, SKELDING KA et al.: Transcutaneous immunization with combined cholera toxin and CpG adjuvant protects against Chlamydia muridarum genital tract infection. Infect. Immun. (2004) 72(2):1019-1028.
  • MCCLUSKIE MJ, DAVIS HL: Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynucleotides as adjuvants. Vaccine (2000) 19(4-5):413-422.
  • HEUFLER C, KOCH F, SCHULER G: Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J. Exp. Med. (1988) 167(2):700-705.
  • MORRISSEY PJ, BRESSLER L, PARK LS, ALPERT A, GILLIS S: Granulocyte-macrophage colony-stimulating factor augments the primary antibody response by enhancing the function of antigen-presenting cells. J. Immunol. (1987) 139(4):1113-1119.
  • SIN JI, KIM JJ, UGEN KE, CICCARELLI RB, HIGGINS TJ, WEINER DB: Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. Eur. J. Immunol. (1998) 28(11):3530-3540.
  • KIM JJ, AYYAVOO V, BAGARAZZI ML et al.: In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J. Immunol. (1997) 158(2):816-826.
  • BAROUCH DH, SANTRA S, TENNER-RACZ K et al.: Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J. Immunol. (2002) 168(2):562-568.
  • OKADA E, SASAKI S, ISHII N et al.: Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. J. Immunol. (1997) 159(7):3638-3647.
  • SVANHOLM C, LOWENADLER B, WIGZELL H: Amplification of T-cell and antibody responses in DNA-based immunization with HIV-1 Nef by co-injection with a GM-CSF expression vector. Scand. J. Immunol. (1997) 46(3):298-303.
  • WEISS WR, ISHII KJ, HEDSTROM RC et al.: A plasmid encoding murine granulocyte-macrophage colony-stimulating factor increases protection conferred by a malaria DNA vaccine. J. Immunol. (1998) 161(5):2325-2332.
  • SEDEGAH M, WEISS W, SACCI JB Jr et al.: Improving protective immunity induced by DNA-based immunization: priming with antigen and GM-CSF-encoding plasmid DNA and boosting with antigen-expressing recombinant poxvirus. J. Immunol. (2000) 164(11):5905-5912.
  • KUMAR S, VILLINGER F, OAKLEY M et al.: A DNA vaccine encoding the 42 kDa C-terminus of merozoite surface protein 1 of Plasmodium falciparum induces antibody, interferon-γ and cytotoxic T cell responses in rhesus monkeys: immuno-stimulatory effects of granulocyte macrophage-colony stimulating factor. Immunol. Lett. (2002) 81(1):13-24.
  • NOGUCHI M, NAKAMURA Y, RUSSELL SM et al.: Interleukin-2 receptor γ chain: a functional component of the interleukin-7 receptor. Science (1993) 262(5141):1877-1880.
  • SUGAMURA K, ASAO H, KONDO M et al.: The interleukin-2 receptor γ chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu. Rev. Immunol. (1996) 14:179-205.
  • WALDMANN TA, DUBOIS S, TAGAYA Y: Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity (2001) 14(2):105-110.
  • FEHNIGER TA, CALIGIURI MA: Interleukin 15: biology and relevance to human disease. Blood (2001) 97(1):14-32.
  • MA A, KOKA R, BURKETT P: Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. (2006) 24:657-679.
  • WALDMANN TA: The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. (2006) 6(8):595-601.
  • WALDMANN TA: The interleukin-2 receptor. J. Biol. Chem. (1991) 266(5):2681-2684.
  • TANIGUCHI T, MINAMI Y: The IL-2/IL-2 receptor system: a current overview. Cell (1993) 73(1):5-8.
  • CHOW YH, HUANG WL, CHI WK, CHU YD, TAO MH: Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2. J. Virol. (1997) 71(1):169-178.
  • CHOW YH, CHIANG BL, LEE YL et al.: Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J. Immunol. (1998) 160(3):1320-1329.
  • GEISSLER M, GESIEN A, TOKUSHIGE K, WANDS JR: Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J. Immunol. (1997) 158(3):1231-1237.
  • SIN JI, KIM JJ, BOYER JD, CICCARELLI RB, HIGGINS TJ, WEINER DB: In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. J. Virol. (1999) 73(1):501-509.
  • KIM JJ, SIMBIRI KA, SIN JI et al.: Cytokine molecular adjuvants modulate immune responses induced by DNA vaccine constructs for HIV-1 and SIV. J. Interferon Cytokine Res. (1999) 19(1):77-84.
  • KIM JJ, TRIVEDI NN, NOTTINGHAM LK et al.: Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur. J. Immunol. (1998) 28(3):1089-1103.
  • XIN KQ, HAMAJIMA K, SASAKI S et al.: Intranasal administration of human immunodeficiency virus type-1 (HIV-1) DNA vaccine with interleukin-2 expression plasmid enhances cell-mediated immunity against HIV-1. Immunology (1998) 94(3):438-444.
  • BAROUCH DH, SANTRA S, STEENBEKE TD et al.: Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J. Immunol. (1998) 161(4):1875-1882.
  • KIM JJ, YANG JS, VANCOTT TC et al.: Modulation of antigen-specific humoral responses in rhesus macaques by using cytokine cDNAs as DNA vaccine adjuvants. J. Virol. (2000) 74(7):3427-3429.
  • KIM JJ, YANG JS, MANSON KH, WEINER DB: Modulation of antigen-specific cellular immune responses to DNA vaccination in rhesus macaques through the use of IL-2, IFN-γ, or IL-4 gene adjuvants. Vaccine (2001) 19(17-19):2496-2505.
  • BAROUCH DH, CRAIU A, KURODA MJ et al.: Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys. Proc. Natl. Acad. Sci. USA (2000) 97(8):4192-4197.
  • BAROUCH DH, SANTRA S, SCHMITZ JE et al.: Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science (2000) 290(5491):486-492.
  • PREMENKO-LANIER M, ROTA PA, RHODES G et al.: DNA vaccination of infants in the presence of maternal antibody: a measles model in the primate. Virology (2003) 307(1):67-75.
  • ROOS AK, PAVLENKO M, CHARO J, EGEVAD L, PISA P: Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. Prostate (2005) 62(3):217-223.
  • HEUFLER C, TOPAR G, GRASSEGER A et al.: Interleukin 7 is produced by murine and human keratinocytes. J. Exp. Med. (1993) 178(3):1109-1114.
  • WATANABE M, UENO Y, YAJIMA T et al.: Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J. Clin. Invest. (1995) 95(6):2945-2953.
  • KIEPER WC, TAN JT, BONDI-BOYD B et al.: Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med. (2002) 195(12):1533-1539.
  • KAECH SM, TAN JT, WHERRY EJ, KONIECZNY BT, SURH CD, AHMED R: Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. (2003) 4(12):1191-1198.
  • SIN JI, KIM J, PATCHUK C, WEINER DB: Interleukin 7 can enhance antigen-specific cytotoxic-T-lymphocyte and/or Th2-type immune responses in vivo. Clin. Diagn. Lab. Immunol. (2000) 7(5):751-758.
  • TRINCHIERI G: Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood (1994) 84(12):4008-4027.
  • TSUJI T, HAMAJIMA K, FUKUSHIMA J et al.: Enhancement of cell-mediated immunity against HIV-1 induced by coinnoculation of plasmid-encoded HIV-1 antigen with plasmid expressing IL-12. J. Immunol. (1997) 158(8):4008-4013.
  • SIN JI, KIM JJ, ARNOLD RL et al.: IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. J. Immunol. (1999) 162(5):2912-2921.
  • KIM JJ, NOTTINGHAM LK, TSAI A et al.: Antigen-specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN-γ, IL-12, or IL-18 gene adjuvants. J. Med. Primatol. (1999) 28(4-5):214-223.
  • GHERARDI MM, RAMIREZ JC, ESTEBAN M: Interleukin-12 (IL-12) enhancement of the cellular immune response against human immunodeficiency virus type 1 env antigen in a DNA prime/vaccinia virus boost vaccine regimen is time and dose dependent: suppressive effects of IL-12 boost are mediated by nitric oxide. J. Virol. (2000) 74(14):6278-6286.
  • O'NEILL E, MARTINEZ I, VILLINGER F et al.: Protection by SIV VLP DNA prime/protein boost following mucosal SIV challenge is markedly enhanced by IL-12/GM-CSF co-administration. J. Med. Primatol. (2002) 31(4-5):217-227.
  • MOORE AC, KONG WP, CHAKRABARTI BK, NABEL GJ: Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice. J. Virol. (2002) 76(1):243-250.
  • CHATTERGOON MA, SAULINO V, SHAMES JP, STEIN J, MONTANER LJ, WEINER DB: Co-immunization with plasmid IL-12 generates a strong T-cell memory response in mice. Vaccine (2004) 22(13-14):1744-1750.
  • BOYER JD, ROBINSON TM, KUTZLER MA et al.: SIV DNA vaccine co-administered with IL-12 expression plasmid enhances CD8 SIV cellular immune responses in cynomolgus macaques. J. Med. Primatol. (2005) 34(5-6):262-270.
  • SCHADECK EB, SIDHU M, EGAN MA et al.: A dose sparing effect by plasmid encoded IL-12 adjuvant on a SIVgag-plasmid DNA vaccine in rhesus macaques. Vaccine (2006) 24(21):4677-4687.
  • CHONG SY, EGAN MA, KUTZLER MA et al.: Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques. Vaccine (2007) 25(26):4967-4982.
  • SEAMAN MS, PEYERL FW, JACKSON SS et al.: Subsets of memory cytotoxic T lymphocytes elicited by vaccination influence the efficiency of secondary expansion in vivo. J. Virol. (2004) 78(1):206-215.
  • CARSON WE, GIRI JG, LINDEMANN MJ et al.: Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. (1994) 180(4):1395-1403.
  • MUELLER YM, BOJCZUK PM, HALSTEAD ES et al.: IL-15 enhances survival and function of HIV-specific CD8+ T cells. Blood (2003) 101(3):1024-1029.
  • ARMITAGE RJ, MACDUFF BM, EISENMAN J, PAXTON R, GRABSTEIN KH: IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J. Immunol. (1995) 154(2):483-490.
  • ZHANG X, SUN S, HWANG I, TOUGH DF, SPRENT J: Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity (1998) 8(5):591-599.
  • KU CC, MURAKAMI M, SAKAMOTO A, KAPPLER J, MARRACK P: Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science (2000) 288(5466):675-678.
  • XIN KQ, HAMAJIMA K, SASAKI S et al.: IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine. Vaccine (1999) 17(7-8):858-866.
  • KUTZLER MA, ROBINSON TM, CHATTERGOON MA et al.: Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J. Immunol. (2005) 175(1):112-123.
  • OH S, BERZOFSKY JA, BURKE DS, WALDMANN TA, PERERA LP: Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc. Natl. Acad. Sci. USA (2003) 100(6):3392-3397.
  • RUBINSTEIN MP, KADIMA AN, SALEM ML, NGUYEN CL, GILLANDERS WE, COLE DJ: Systemic administration of IL-15 augments the antigen-specific primary CD8+ T cell response following vaccination with peptide-pulsed dendritic cells. J. Immunol. (2002) 169(9):4928-4935.
  • VILLINGER F, MILLER R, MORI K et al.: IL-15 is superior to IL-2 in the generation of long-lived antigen specific memory CD4 and CD8 T cells in rhesus macaques. Vaccine (2004) 22(25-26):3510-3521.
  • MELCHIONDA F, FRY TJ, MILLIRON MJ, MCKIRDY MA, TAGAYA Y, MACKALL CL: Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest. (2005) 115(5):1177-1187.
  • REECE WH, PINDER M, GOTHARD PK et al.: A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat. Med. (2004) 10(4):406-410.
  • KEATING SM, BEJON P, BERTHOUD T et al.: Durable human memory T cells quantifiable by cultured enzyme-linked immunospot assays are induced by heterologous prime boost immunization and correlate with protection against malaria. J. Immunol. (2005) 175(9):5675-5680.
  • WEBSTER DP, DUNACHIE S, VUOLA JM et al.: Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl. Acad. Sci. USA (2005) 102(13):4836-4841.
  • MOHAMADZADEH M, BERARD F, ESSERT G et al.: Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J. Exp. Med. (2001) 194(7):1013-1020.
  • PARKER SE, MONTEITH D, HORTON H et al.: Safety of a GM-CSF adjuvant-plasmid DNA malaria vaccine. Gene Ther. (2001) 8(13):1011-1023.
  • BAROUCH DH, TRUITT DM, LETVIN NL: Expression kinetics of the interleukin-2/immunoglobulin (IL-2/Ig) plasmid cytokine adjuvant. Vaccine (2004) 22(23-24):3092-3097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.