214
Views
14
CrossRef citations to date
0
Altmetric
Review

Allogeneic tumor-cell-based vaccines secreting endoplasmic reticulum chaperone gp96

, MD & , MD FACP FCCP
Pages 1679-1688 | Published online: 26 Oct 2007

Bibliography

  • PARIS S, DENIS H, DELAIVE E et al.: Up-regulation of 94-kDa glucose-regulated protein by hypoxia-inducible factor-1 in human endothelial cells in response to hypoxia. FEBS Lett. (2005) 579(1):105-114.
  • ROY B, LEE AS: The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res. (1999) 27(6):1437-1443.
  • LI Z, SRIVASTAVA PK: Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J. (1993) 12(8):3143-3151.
  • YANG Y, LIU B, DAI J et al.: Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity (2007) 26(2):215-226.
  • DOLLINS DE, IMMORMINO RM, GEWIRTH DT: Structure of unliganded GRP94, the endoplasmic reticulum Hsp90. Basis for nucleotide-induced conformational change. J. Biol. Chem. (2005) 280(34):30438-30447.
  • IMMORMINO RM, DOLLINS DE, SHAFFER PL, SOLDANO KL, WALKER MA, GEWIRTH DT: Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone. J. Biol. Chem. (2004) 279(44):46162-46171.
  • LINDEROTH NA, SIMON MN, HAINFELD JF, SASTRY S: Binding of antigenic peptide to the endoplasmic reticulum-resident protein gp96/GRP94 heat shock chaperone occurs in higher order complexes. Essential role of some aromatic amino acid residues in the peptide-binding site. J. Biol. Chem. (2001) 276(14):11049-11054.
  • LINDEROTH NA, SIMON MN, RODIONOVA NA et al.: Biophysical analysis of the endoplasmic reticulum-resident chaperone/heat shock protein gp96/GRP94 and its complex with peptide antigen. Biochemistry (2001) 40(5):1483-1495.
  • BISWAS C, SRIRAM U, CIRIC B, OSTROVSKY O, GALLUCCI S, ARGON Y: The N-terminal fragment of GRP94 is sufficient for peptide presentation via professional antigen-presenting cells. Int. Immunol. (2006) 18(7):1147-1157.
  • GIDALEVITZ T, BISWAS C, DING H et al.: Identification of the N-terminal peptide binding site of glucose-regulated protein 94. J. Biol. Chem. (2004) 279(16):16543-16552.
  • YING M, FLATMARK T: Binding of the viral immunogenic octapeptide VSV8 to native glucose-regulated protein Grp94 (gp96) and its inhibition by the physiological ligands ATP and Ca2+. FEBS J. (2006) 273(3):513-522.
  • SUTO R, SRIVASTAVA PK: A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science (New York, NY) (1995) 269(5230):1585-1588.
  • UDONO H, SRIVASTAVA PK: Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J. Immunol. (1994) 152(11):5398-5403.
  • BASU S, BINDER RJ, SUTO R, ANDERSON KM, SRIVASTAVA PK: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. (2000) 12(11):1539-1546.
  • YAMAZAKI K, NGUYEN T, PODACK ER: Cutting edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J. Immunol. (1999) 163(10):5178-5182.
  • BINDER RJ, HAN DK, SRIVASTAVA PK: CD91: a receptor for heat shock protein gp96. Nat. Immunol. (2000) 1(2):151-155.
  • BERWIN B, DELNESTE Y, LOVINGOOD RV, POST SR, PIZZO SV: SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J. Biol. Chem. (2004) 279(49):51250-51257.
  • CALDERWOOD SK, MAMBULA SS, GRAY PJ Jr, THERIAULT JR: Extracellular heat shock proteins in cell signaling. FEBS Lett. (2007) 581(19):3689-3694.
  • SINGH-JASUJA H, HILF N, SCHERER HU et al.: The heat shock protein gp96: a receptor-targeted cross-priming carrier and activator of dendritic cells. Cell Stress Chaperones (2000) 5(5):462-470.
  • SINGH-JASUJA H, SCHERER HU, HILF N et al.: The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol. (2000) 30(8):2211-2215.
  • SINGH-JASUJA H, TOES RE, SPEE P et al.: Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med. (2000) 191(11):1965-1974.
  • OIZUMI S, STRBO N, PAHWA S, DEYEV V, PODACK ER: Molecular and cellular requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lymphocytes. J. Immunol. (2007) 179(4):2310-2317.
  • BINDER RJ, BLACHERE NE, SRIVASTAVA PK: Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J. Biol. Chem. (2001) 276(20):17163-17171.
  • MARTIN-FONTECHA A, THOMSEN LL, BRETT S et al.: Induced recruitment of NK cells to lymph nodes provides IFN-γ for T(H)1 priming. Nat. Immunol. (2004) 5(12):1260-1265.
  • ARNOLD D, FAATH S, RAMMENSEE H, SCHILD H: Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J. Exp. Med. (1995) 182(3):885-889.
  • NORBURY CC, BASTA S, DONOHUE KB et al.: CD8+ T cell cross-priming via transfer of proteasome substrates. Science (New York, NY) (2004) 304(5675):1318-1321.
  • SHEN L, ROCK KL: Cellular protein is the source of cross-priming antigen in vivo. Proc. Natl. Acad. Sci. USA (2004) 101(9):3035-3040.
  • BINDER RJ, SRIVASTAVA PK: Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat. Immunol. (2005) 6(6):593-599.
  • DEMINE R, WALDEN P: Testing the role of gp96 as peptide chaperone in antigen processing. J. Biol. Chem. (2005) 280(18):17573-17578.
  • STRBO N, OIZUMI S, SOTOSEK-TOKMADZIC V, PODACK ER: Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity (2003) 18(3):381-390.
  • SLINGLUFF CL Jr, CHIANESE-BULLOCK KA, BULLOCK TN et al.: Immunity to melanoma antigens: from self-tolerance to immunotherapy. Adv. Immunol. (2006) 90:243-295.
  • GAJEWSKI TF, MENG Y, HARLIN H: Immune suppression in the tumor microenvironment. J. Immunother. (1997) (2006) 29(3):233-240.
  • HOFMANN HS, BARTLING B, SIMM A et al.: Identification and classification of differentially expressed genes in non-small cell lung cancer by expression profiling on a global human 59.620-element oligonucleotide array. Oncol. Rep. (2006) 16(3):587-595.
  • RAEZ LE, CASSILETH PA, SCHLESSELMAN JJ et al.: Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. (2004) 22(14):2800-2807.
  • GULLO CA, TEOH G: Heat shock proteins: to present or not, that is the question. Immunol. Lett. (2004) 94(1-2):1-10.
  • LEWIS JJ: Therapeutic cancer vaccines: using unique antigens. Proc. Natl. Acad. Sci. USA (2004) 101(Suppl. 2):14653-14656.
  • BELLI F, TESTORI A, RIVOLTINI L et al.: Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol. (2002) 20(20):4169-4180.
  • PILLA L, PATUZZO R, RIVOLTINI L et al.: A Phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunol. Immunother. (2006) 55(8):958-968.
  • PILLA L, VALENTI R, MARRARI A et al.: Vaccination: role in metastatic melanoma. Expert Rev. Anticancer Ther. (2006) 6(8):1305-1318.
  • LI Z, QIAO Y, LIU B et al.: Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin. Cancer Res. (2005) 11(12):4460-4468.
  • QIAN J, WANG S, YANG J et al.: Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96. Clin. Cancer Res. (2005) 11(24 Part 1):8808-8815.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.