754
Views
173
CrossRef citations to date
0
Altmetric
Review

Immunotherapy of cancer by IL-12-based cytokine combinations

, , &
Pages 1705-1721 | Published online: 26 Oct 2007

Bibliography

  • MANETTI R, PARRONCHI P, GIUDIZI MG et al.: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. (1993) 177(4):1199-1204.
  • COLOMBO MP, TRINCHIERI G: Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. (2002) 13(2):155-168.
  • TRINCHIERI G, GEROSA F: Immunoregulation by interleukin-12. J. Leuk. Biol. (1996) 59(4):505-511.
  • DEL VECCHIO M, BAJETTA E, CANOVA S et al.: Interleukin-12: biological properties and clinical application. Clin. Cancer Res. (2007) 13(16):4677-4685.
  • MANETTI R, GEROSA F, GIUDIZI MG et al.: Interleukin 12 induces stable priming for interferon-γ (IFN-γ) production during differentiation of human T helper (Th) cells and transient IFN-γ production in established Th2 cell clones. J. Exp. Med. (1994) 179(4):1273-1283.
  • WIGGINTON JM, GRUYS E, GEISELHART L et al.: IFN-γ and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/plus IL-2 therapy. J. Clin. Invest. (2001) 108(1):51-62.
  • MURPHY WJ, WELNIAK L, BACK T et al.: Synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J. Immunol. (2003) 170(5):2727-2733.
  • WIGGINTON JM, LEE JK, WILTROUT TA et al.: Synergistic engagement of an ineffective endogenous anti-tumor immune response and induction of IFN-γ and Fas-ligand-dependent tumor eradication by combined administration of IL-18 and IL-2. J. Immunol. (2002) 169(8):4467-4474.
  • STRIETER RM, POLVERINI PJ, ARENBERG DA, KUNKEL SL: The role of CXC chemokines as regulators of angiogenesis. Shock (1995) 4(3):155-160.
  • WIGGINTON JM, WILTROUT RH: IL-12/IL-2 combination cytokine therapy for solid tumours: translation from bench to bedside. Expert Opin. Biol. Ther. (2002) 2(5):513-524.
  • HEINZERLING L, DUMMER R, PAVLOVIC J, SCHULTZ J, BURG G, MOELLING K: Tumor regression of human and murine melanoma after intratumoral injection of IL-12-encoding plasmid DNA in mice. Exp. Dermatol. (2002) 11(3):232-240.
  • HEINZERLING L, BURG G, DUMMER R et al.: Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum. Gene Ther. (2005) 16(1):35-48.
  • HAICHEUR N, ESCUDIER B, DORVAL T et al.: Cytokines and soluble cytokine receptor induction after IL-12 administration in cancer patients. Clin. Exp. Immunol. (2000) 119(1):28-37.
  • PORTIELJE JE, LAMERS CH, KRUIT WH et al.: Repeated administrations of interleukin (IL)-12 are associated with persistently elevated plasma levels of IL-10 and declining IFN-γ, TNF-α, IL-6, and IL-8 responses. Clin. Cancer Res. (2003) 9(1):76-83.
  • ATKINS MB, ROBERTSON MJ, GORDON M et al.: Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. (1997) 3(3):409-417.
  • CAR BD, ENG VM, LIPMAN JM, ANDERSON TD: The toxicology of interleukin-12: a review. Toxicol. Pathol. (1999) 27(1):58-63.
  • SANGRO B, MELERO I, QIAN C, PRIETO J: Gene therapy of cancer based on interleukin 12. Curr. Gene Ther. (2005) 5(6):573-581.
  • SALEM ML, GILLANDERS WE, KADIMA AN et al.: Review: novel nonviral delivery approaches for interleukin-12 protein and gene systems: curbing toxicity and enhancing adjuvant activity. J. Interferon Cytokine Res. (2006) 26(9):593-608.
  • RAKHMILEVICH AL, TIMMINS JG, JANSSEN K, POHLMANN EL, SHEEHY MJ, YANG NS: Gene gun-mediated IL-12 gene therapy induces antitumor effects in the absence of toxicity: a direct comparison with systemic IL-12 protein therapy. J. Immunother. (1999) 22(2):135-144.
  • HELLER L, MERKLER K, WESTOVER J et al.: Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin. Cancer Res. (2006) 12(10):3177-3183.
  • RAKHMILEVICH AL, JANSSEN K, HAO Z, SONDEL PM, YANG NS: Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of spontaneous lung metastases via a T-cell-independent mechanism. Cancer Gene Ther. (2000) 7(6):826-838.
  • MAZZOLINI G, ALFARO C, SANGRO B et al.: Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J. Clin. Oncol. (2005) 23(5):999-1010.
  • MAHVI DM, HENRY MB, ALBERTINI MR et al.: Intratumoral injection of IL-12 plasmid DNA – results of a Phase I/IB clinical trial. Cancer Gene Ther. (2007) 14(8):717-723.
  • IMBODEN M, SHI F, PUGH TD et al.: Safety of interleukin-12 gene therapy against cancer: a murine biodistribution and toxicity study. Hum. Gene Ther. (2003) 14(11):1037-1048.
  • ASTE-AMEZAGA M, D'ANDREA A, KUBIN M, TRINCHIERI G: Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell Immunol. (1994) 156(2):480-492.
  • KUBIN M, KAMOUN M, TRINCHIERI G: Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J. Exp. Med. (1994) 180(1):211-222.
  • PULASKI BA, CLEMENTS VK, PIPELING MR, OSTRAND-ROSENBERG S: Immunotherapy with vaccines combining MHC class II/CD80+ tumor cells with interleukin-12 reduces established metastatic disease and stimulates immune effectors and monokine induced by interferon-γ. Cancer Immunol. Immunother. (2000) 49(1):34-45.
  • ALVES NL, AROSA FA, VAN LIER RA: Common γ-chain cytokines: dissidence in the details. Immunol. Lett. (2007) 108(2):113-120.
  • GOLLOB JA, SCHNIPPER CP, MURPHY EA, RITZ J, FRANK DA: The functional synergy between IL-12 and IL-2 involves p38 mitogen-activated protein kinase and is associated with the augmentation of STAT serine phosphorylation. J. Immunol. (1999) 162(8):4472-4481.
  • GILLIES SD, LAN Y, BRUNKHORST B, WONG WK, LI Y, LO KM: Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol. Immunother. (2002) 51(8):449-460.
  • YOU TG, WANG HS, YANG JH, QIAN QJ, FAN RF, WU MC: Transfection of IL-2 and/or IL-12 genes into spleen in treatment of rat liver cancer. World J. Gastroenterol. (2004) 10(15):2190-2194.
  • DIETRICH A, KRAUS K, BRINCKMANN U et al.: Complex cancer gene therapy in mice melanoma. Langenbecks Arch. Surg. (2002) 387(3-4):177-182.
  • LI D, SHUGERT E, GUO M, BISHOP JS, O'MALLEY BW Jr: Combination nonviral interleukin 2 and interleukin 12 gene therapy for head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. (2001) 127(11):1319-1324.
  • WIGGINTON JM, PARK JW, GRUYS ME et al.: Complete regression of established spontaneous mammary carcinoma and the therapeutic prevention of genetically programmed neoplastic transition by IL-12/plus IL-2: induction of local T cell infiltration, Fas/Fas ligand gene expression, and mammary epithelial apoptosis. J. Immunol. (2001) 166(2):1156-1168.
  • WIGGINTON JM, KOMSCHLIES KL, BACK TC, FRANCO JL, BRUNDA MJ, WILTROUT RH: Administration of interleukin 12 with plus interleukin 2 and the rapid and complete eradication of murine renal carcinoma. J. Natl. Cancer Inst. (1996) 88(1):38-43.
  • GOLLOB JA, VEENSTRA KG, PARKER RA et al.: Phase I trial of concurrent twice-weekly recombinant human interleukin-12 plus low-dose IL-2 in patients with melanoma or renal cell carcinoma. J. Clin. Oncol. (2003) 21(13):2564-2573.
  • GOLLOB JA, MIER JW, VEENSTRA K et al.: Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin. Cancer Res. (2000) 6(5):1678-1692.
  • KOYAMA S: Augmented human-tumor-cytolytic activity of peripheral blood lymphocytes and cells from a mixed lymphocyte/tumor culture activated by interleukin-12 plus interleukin-2, and the phenotypic characterization of the cells in patients with advanced carcinoma. J. Cancer Res. Clin. Oncol. (1997) 123(9):478-484.
  • WALDMANN TA: The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. (2006) 6(8):595-601.
  • FEHNIGER TA, COOPER MA, CALIGIURI MA: Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev. (2002) 13(2):169-183.
  • DUBOIS S, MARINER J, WALDMANN TA, TAGAYA Y: IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity (2002) 17(5):537-547.
  • KOBAYASHI H, DUBOIS S, SATO N et al.: Role of trans-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood (2005) 105(2):721-727.
  • KOKA R, BURKETT P, CHIEN M, CHAI S, BOONE DL, MA A: Cutting edge: murine dendritic cells require IL-15Rα to prime NK cells. J. Immunol. (2004) 173(6):3594-3598.
  • LENARDO MJ: Interleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature (1991) 353(6347):858-861.
  • WILLERFORD DM, CHEN J, FERRY JA, DAVIDSON L, MA A, ALT FW: Interleukin-2 receptor α-chain regulates the size and content of the peripheral lymphoid compartment. Immunity (1995) 3(4):521-530.
  • MARKS-KONCZALIK J, DUBOIS S, LOSI JM et al.: IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl. Acad. Sci. USA (2000) 97(21):11445-11450.
  • FURTADO GC, CUROTTO DE LAFAILLE MA, KUTCHUKHIDZE N, LAFAILLE JJ: Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J. Exp. Med. (2002) 196(6):851-857.
  • MALEK TR, YU A, VINCEK V, SCIBELLI P, KONG L: CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity (2002) 17(2):167-178.
  • ALMEIDA AR, LEGRAND N, PAPIERNIK M, FREITAS AA: Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol. (2002) 169(9):4850-4860.
  • ZHANG X, SUN S, HWANG I, TOUGH DF, SPRENT J: Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity (1998) 8(5):591-599.
  • TEAGUE RM, SATHER BD, SACKS JA et al.: Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat. Med. (2006) 12(3):335-341.
  • LASEK W, GOLAB J, MASLINSKI W et al.: Subtherapeutic doses of interleukin-15 augment the antitumor effect of interleukin-12 in a B16F10 melanoma model in mice. Eur. Cytokine Netw. (1999) 10(3):345-356.
  • DI CARLO E, COMES A, BASSO S et al.: The combined action of IL-15 and IL-12 gene transfer can induce tumor cell rejection without T and NK cell involvement. J. Immunol. (2000) 165(6):3111-3118.
  • COMES A, DI CARLO E, MUSIANI P et al.: IFN-γ-independent synergistic effects of IL-12 and IL-15 induce anti-tumor immune responses in syngeneic mice. Eur. J. Immunol. (2002) 32(7):1914-1923.
  • KIMURA K, NISHIMURA H, MATSUZAKI T, YOKOKURA T, NIMURA Y, YOSHIKAI Y: Synergistic effect of interleukin-15 and interleukin-12 on antitumor activity in a murine malignant pleurisy model. Cancer Immunol. Immunother. (2000) 49(2):71-77.
  • MARINER JM, MAMANE Y, HISCOTT J, WALDMANN TA, AZIMI N: IFN regulatory factor 4 participates in the human T cell lymphotropic virus type I-mediated activation of the IL-15 receptor alpha promoter. J. Immunol. (2002) 168(11):5667-5674.
  • CROCE M, MEAZZA R, ORENGO AM et al.: Sequential immunogene therapy with interleukin-12- and interleukin-15-engineered neuroblastoma cells cures metastatic disease in syngeneic mice. Clin. Cancer Res. (2005) 11(2 Part 1):735-742.
  • TAN JT, DUDL E, LEROY E et al.: IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. USA (2001) 98(15):8732-8737.
  • TAN JT, ERNST B, KIEPER WC, LEROY E, SPRENT J, SURH CD: Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. (2002) 195(12):1523-1532.
  • JICHA DL, MULE JJ, ROSENBERG SA: Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J. Exp. Med. (1991) 174(6):1511-1515.
  • KOMSCHLIES KL, GREGORIO TA, GRUYS ME, BACK TC, FALTYNEK CR, WILTROUT RH: Administration of recombinant human IL-7 to mice alters the composition of B-lineage cells and T cell subsets, enhances T cell function, and induces regression of established metastases. J. Immunol. (1994) 152(12):5776-5784.
  • SANDAU MM, WINSTEAD CJ, JAMESON SC: IL-15 is required for sustained lymphopenia-driven proliferation and accumulation of CD8 T cells. J. Immunol. (2007) 179(1):120-125.
  • CHEN YM, TSAI CM, WHANG-PENG J, PERNG RP: nterleukin-7 and interleukin-12 have different effects in rescue of depressed cellular immunity: comparison of malignant and tuberculous pleural effusions. J. Interferon Cytokine Res. (2001) 21(4):249-256.
  • PARRISH-NOVAK J, DILLON SR, NELSON A et al.: Interleukin-21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature (2000) 408(6808):57-63.
  • KASAIAN MT, WHITTERS MJ, CARTER LL et al.: IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity (2002) 16(4):559-569.
  • WANG G, TSCHOI M, SPOLSKI R et al.: In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res. (2003) 63(24):9016-9022.
  • STRENGELL M, SARENEVA T, FOSTER D, JULKUNEN I, MATIKAINEN S: IL-21 up-regulates the expression of genes associated with innate immunity and Th1 response. J. Immunol. (2002) 169(7):3600-3605.
  • SMYTH MJ, WALLACE ME, NUTT SL, YAGITA H, GODFREY DI, HAYAKAWA Y: Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J. Exp. Med. (2005) 201(12):1973-1985.
  • OKAMURA H, TSUTSI H, KOMATSU T et al.: Cloning of a new cytokine that induces IFN-γ production by T cells. Nature (1995) 378(6552):88-91.
  • TAKEDA K, TSUTSUI H, YOSHIMOTO T et al.: Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity (1998) 8(3):383-390.
  • MICALLEF MJ, YOSHIDA K, KAWAI S et al.: In vivo antitumor effects of murine interferon-γ-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol. Immunother. (1997) 43(6):361-367.
  • JONAK ZL, TRULLI S, MAIER C et al.: High-dose recombinant interleukin-18 induces an effective Th1 immune response to murine MOPC-315 plasmacytoma. J. Immunother. (2002) 25(Suppl. 1):S20-S27.
  • OSAKI T, PERON JM, CAI Q et al.: IFN-γ-inducing factor/IL-18 administration mediates IFN-γ- and IL-12-independent antitumor effects. J. Immunol. (1998) 160(4):1742-1749.
  • VIDAL-VANACLOCHA F, MENDOZA L, TELLERIA N et al.: Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metast. Rev. (2006) 25(3):417-434.
  • CARRASCAL MT, MENDOZA L, VALCARCEL M et al.: Interleukin-18 binding protein reduces b16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium. Cancer Res. (2003) 63(2):491-497.
  • SMELTZ RB, CHEN J, HU-LI J, SHEVACH EM: Regulation of interleukin (IL)-18 receptor α-chain expression on CD4(+) T cells during T helper (Th)1/Th2 differentiation. Critical downregulatory role of IL-4. J. Exp. Med. (2001) 194(2):143-153.
  • COUGHLIN CM, SALHANY KE, WYSOCKA M et al.: Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J. Clin. Invest. (1998) 101(6):1441-1452.
  • RODRIGUEZ-GALAN MC, BREAM JH, FARR A, YOUNG HA: Synergistic effect of IL-2, IL-12, and IL-18 on thymocyte apoptosis and Th1/Th2 cytokine expression. J. Immunol. (2005) 174(5):2796-2804.
  • LI Q, CARR AL, DONALD EJ et al.: Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-cell responses towards a type 1 pattern. Cancer Res. (2005) 65(3):1063-1070.
  • KOBASHI K, IWAGAKI H, YOSHINO T et al.: Down-regulation of IL-18 receptor in cancer patients: its clinical significance. Anticancer Res. (2001) 21(5):3285-3293.
  • SUBLESKI JJ, HALL VL, BACK TC, ORTALDO JR, WILTROUT RH: Enhanced antitumor response by divergent modulation of natural killer and natural killer T cells in the liver. Cancer Res. (2006) 66(22):11005-11012.
  • TATSUMI T, HUANG J, GOODING WE et al.: Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res. (2003) 63(19):6378-6386.
  • CARSON WE, DIERKSHEIDE JE, JABBOUR S et al.: Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-γ production and STAT-mediated signal transduction. Blood (2000) 96(4):1465-1473.
  • DRANOFF G: GM-CSF-based cancer vaccines. Immunol. Rev. (2002) 188:147-154.
  • WANG Z, QIU SJ, YE SL, TANG ZY, XIAO X: Combined IL-12 and GM-CSF gene therapy for murine hepatocellular carcinoma. Cancer Gene Ther. (2001) 8(10):751-758.
  • CHANG CJ, CHEN YH, HUANG KW et al.: Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology (2007) 45(3):746-754.
  • JEAN WC, SPELLMAN SR, WALLENFRIEDMAN MA et al.: Effects of combined granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2, and interleukin-12 based immunotherapy against intracranial glioma in the rat. J. Neurooncol. (2004) 66(1-2):39-49.
  • NAIR RE, JONG YS, JONES SA, SHARMA A, MATHIOWITZ E, EGILMEZ NK: IL-12 + GM-CSF microsphere therapy induces eradication of advanced spontaneous tumors in her-2/neu transgenic mice but fails to achieve long-term cure due to the inability to maintain effector T-cell activity. J. Immunother. (2006) 29(1):10-20.
  • HILL HC, CONWAY TF Jr, SABEL MS et al.: Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res. (2002) 62(24):7254-7263.
  • KILINC MO, AULAKH KS, NAIR RE et al.: Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J. Immunol. (2006) 177(10):6962-6973.
  • RASMUSSEN T, HANSSON L, OSTERBORG A, JOHNSEN HE, MELLSTEDT H: Idiotype vaccination in multiple myeloma induced a reduction of circulating clonal tumor B cells. Blood (2003) 101(11):4607-4610.
  • HANSSON L, ABDALLA AO, MOSHFEGH A et al.: Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin. Cancer Res. (2007) 13(5):1503-1510.
  • ABDALLA AO, HANSSON L, ERIKSSON I et al.: Idiotype protein vaccination in combination with adjuvant cytokines in patients with multiple myeloma – evaluation of T-cell responses by different read-out systems. Haematologica (2007) 92(1):110-114.
  • LEHTONEN A, LUND R, LAHESMAA R, JULKUNEN I, SARENEVA T, MATIKAINEN S: IFN-α and IL-12 activate IFN regulatory factor 1 (IRF-1), IRF-4, and IRF-8 gene expression in human NK and T cells. Cytokine (2003) 24(3):81-90.
  • LESINSKI GB, BADGWELL B, ZIMMERER J et al.: IL-12 pretreatments enhance IFN-α-induced janus kinase-STAT signaling and potentiate the antitumor effects of IFN-α in a murine model of malignant melanoma. J. Immunol. (2004) 172(12):7368-7376.
  • EGUCHI J, HIROISHI K, ISHII S, MITAMURA K: Interferon-α and interleukin-12 gene therapy of cancer: interferon-α induces tumor-specific immune responses while interleukin-12 stimulates non-specific killing. Cancer Immunol. Immunother. (2003) 52(6):378-386.
  • MENDIRATTA SK, QUEZADA A, MATAR M et al.: Combination of interleukin 12 and interferon-α gene therapy induces a synergistic antitumor response against colon and renal cell carcinoma. Hum. Gene Ther. (2000) 11(13):1851-1862.
  • EISENBEIS CF, LESINSKI GB, ANGHELINA M et al.: Phase I study of the sequential combination of interleukin-12 and interferon α-2b in advanced cancer: evidence for modulation of interferon signaling pathways by interleukin-12. J. Clin. Oncol. (2005) 23(34):8835-8844.
  • ALATRASH G, HUTSON TE, MOLTO L et al.: Clinical and immunologic effects of subcutaneously administered interleukin-12 and interferon α-2b: Phase I trial of patients with metastatic renal cell carcinoma or malignant melanoma. J. Clin. Oncol. (2004) 22(14):2891-2900.
  • ANGIOLILLO AL, SGADARI C, TOSATO G: A role for the interferon-inducible protein 10 in inhibition of angiogenesis by interleukin-12. Ann. NY Acad. Sci. (1996) 795:158-167.
  • KANEGANE C, SGADARI C, KANEGANE H et al.: Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J. Leuk. Biol. (1998) 64(3):384-392.
  • SGADARI C, ANGIOLILLO AL, TOSATO G: Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood (1996) 87(9):3877-3882.
  • TANNENBAUM CS, TUBBS R, ARMSTRONG D, FINKE JH, BUKOWSKI RM, HAMILTON TA: The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor. J. Immunol. (1998) 161(2):927-932.
  • KEYSER J, SCHULTZ J, LADELL K et al.: IP-10-encoding plasmid DNA therapy exhibits anti-tumor and anti-metastatic efficiency. Exp. Dermatol. (2004) 13(6):380-390.
  • YAO L, SGADARI C, FURUKE K, BLOOM ET, TERUYA-FELDSTEIN J, TOSATO G: Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood (1999) 93(5):1612-1621.
  • NARVAIZA I, MAZZOLINI G, BARAJAS M et al.: Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-γ-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J. Immunol. (2000) 164(6):3112-3122.
  • PALMER K, HITT M, EMTAGE PC, GYORFFY S, GAULDIE J: Combined CXC chemokine and interleukin-12 gene transfer enhances antitumor immunity. Gene Ther. (2001) 8(4):282-290.
  • MAZZOLINI G, NARVAIZA I, MARTINEZ-CRUZ LA et al.: Pancreatic cancer escape variants that evade immunogene therapy through loss of sensitivity to IFNγ-induced apoptosis. Gene Ther. (2003) 10(13):1067-1078.
  • GYORFFY S, PALMER K, PODOR TJ, HITT M, GAULDIE J: Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy. J. Immunol. (2001) 166(10):6212-6217.
  • YAO L, PIKE SE, SETSUDA J et al.: Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood (2000) 96(5):1900-1905.
  • LADELL K, HEINRICH J, SCHWENEKER M, MOELLING K: A combination of plasmid DNAs encoding murine fetal liver kinase 1 extracellular domain, murine interleukin-12, and murine interferon-γ inducible protein-10 leads to tumor regression and survival in melanoma-bearing mice. J. Mol. Med. (2003) 81(4):271-278.
  • BALKWILL F, CHARLES KA, MANTOVANI A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. (2005) 7(3):211-217.
  • BALKWILL F, MANTOVANI A: Inflammation and cancer: back to Virchow? Lancet (2001) 357(9255):539-545.
  • AHLERS JD, BELYAKOV IM, MATSUI S, BERZOFSKY JA: Signals delivered through TCR instruct IL-12 receptor (IL-12R) expression: IL-12 and TNF-α synergize for IL-12R expression at low antigen dose. Int. Immunol. (2001) 13(11):1433-1442.
  • SABEL MS, SKITZKI J, STOOLMAN L et al.: Intratumoral IL-12 and TNF-α-loaded microspheres lead to regression of breast cancer and systemic antitumor immunity. Ann. Surg. Oncol. (2004) 11(2):147-156.
  • TANIGUCHI F, YAMAGISHI H, FUJIWARA H et al.: Systemic administration of rIL-12 synergistically enhances the therapeutic effect of a TNF gene-transduced cancer vaccine. Gene Ther. (1998) 5(12):1677-1684.
  • LASEK W, MACKIEWICZ A, CZAJKA A et al.: Antitumor effects of the combination therapy with TNF-α gene-modified tumor cells and interleukin 12 in a melanoma model in mice. Cancer Gene Ther. (2000) 7(12):1581-1590.
  • KASTELEIN RA, HUNTER CA, CUA DJ: Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. (2007) 25:221-242.
  • ONIKI S, NAGAI H, HORIKAWA T et al.: Interleukin-23 and interleukin-27 exert quite different antitumor and vaccine effects on poorly immunogenic melanoma. Cancer Res. (2006) 66(12):6395-6404.
  • OPPMANN B, LESLEY R, BLOM B et al.: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity (2000) 13(5):715-725.
  • HAO JS, SHAN BE: Immune enhancement and anti-tumour activity of IL-23. Cancer Immunol. Immunother. (2006) 55(11):1426-1431.
  • OVERWIJK WW, DE VISSER KE, TIRION FH et al.: Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. J. Immunol. (2006) 176(9):5213-5222.
  • LANGOWSKI JL, ZHANG X, WU L et al.: IL-23 promotes tumour incidence and growth. Nature (2006) 442(7101):461-465.
  • PFLANZ S, TIMANS JC, CHEUNG J et al.: IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity (2002) 16(6):779-790.
  • SALCEDO R, STAUFFER JK, LINCOLN E et al.: IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J. Immunol. (2004) 173(12):7170-7182.
  • HISADA M, KAMIYA S, FUJITA K et al.: Potent antitumor activity of interleukin-27. Cancer Res. (2004) 64(3):1152-1156.
  • CHIYO M, SHIMOZATO O, YU L et al.: Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals. Int. J. Cancer (2005) 115(3):437-442.
  • ELZAOUK L, PAVLOVIC J, MOELLING K: Analysis of antitumor activity elicited by vaccination with combinations of interleukin-12 DNA with gp100 DNA or the chemokine CCL21 in vivo. Hum. Gene Ther. (2006) 17(8):859-870.
  • OKADA N, IIYAMA S, OKADA Y et al.: Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther. (2005) 12(1):72-83.
  • RAO JB, CHAMBERLAIN RS, BRONTE V et al.: IL-12 is an effective adjuvant to recombinant vaccinia virus-based tumor vaccines: enhancement by simultaneous B7-1 expression. J. Immunol. (1996) 156(9):3357-3365.
  • TATSUMI T, TAKEHARA T, KANTO T et al.: Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res. (2001) 61(20):7563-7567.
  • KIM CH, HONG MJ, PARK SD et al.: Enhancement of anti-tumor immunity specific to murine glioma by vaccination with tumor cell lysate-pulsed dendritic cells engineered to produce interleukin-12. Cancer Immunol. Immunother. (2006) 55(11):1309-1319.
  • SAIKA T, SATOH T, KUSAKA N et al.: Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther. (2004) 11(5):317-324.
  • HAMID O, SOLOMON JC, SCOTLAND R et al.: Alum with interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin Cancer Res. (2007) 13(1):215-222.
  • LEE KH, WANG E, NIELSEN MB et al.: Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J. Immunol. (1999) 163(11):6292-6300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.