245
Views
25
CrossRef citations to date
0
Altmetric
Review

Novel strategies for Alzheimer's disease treatment

, , , &
Pages 1853-1867 | Published online: 22 Nov 2007

Bibliography

  • ASHFORD JW: APOE genotype effects on Alzheimer's disease onset and epidemiology. J. Mol. Neurosci. (2004) 23(3):157-165.
  • BRAAK H, BRAAK E, GRUNDKE-IQBAL I, IQBAL K: Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci. Lett. (1986) 65(3):351-355.
  • TROJANOWSKI JQ, SHIN RW, SCHMIDT ML, LEE VM: Relationship between plaques, tangles, and dystrophic processes in Alzheimer's disease. Neurobiol. Aging (1995) 16(3):335-340; discussion 341-335.
  • SELKOE DJ: The molecular pathology of Alzheimer's disease. Neuron (1991) 6(4):487-498.
  • TERRY R, HANSEN L, MASLIAH E: Structural basis of the cognitive alterations in Alzheimer disease. In: Alzheimer disease. Terry R, Katzman R, Bick KL (Eds), Raven Press, New York, USA (1994):179-196.
  • MASLIAH E: The natural evolution of the neurodegenerative alterations in Alzheimer's disease. Neurobiol. Aging (1995) 16:280-282.
  • HASHIMOTO M, MASLIAH E: Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer's and dementia with Lewy bodies. Neurochem. Res. (2003) 28(11):1743-1756.
  • MASLIAH E: The role of synaptic proteins in Alzheimer's disease. Ann. NY Acad. Sci. (2000) 924:68-75.
  • HYMAN B, GOMEZ-ISLA T: Alzheimer's disease is a laminar regional and neural system specific disease, not a global brain disease. Neurobiol. Aging (1994) 15:353-354.
  • AUGUSTINACK JC, SCHNEIDER A, MANDELKOW EM, HYMAN BT: Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol. (Berl) (2002) 103(1):26-35.
  • KAMENETZ F, TOMITA T, HSIEH H et al.: APP processing and synaptic function. Neuron (2003) 37(6):925-937.
  • SINHA S, ANDERSON J, JOHN V et al.: Recent advances in the understanding of the processing of APP to β-amyloid peptide. Ann. NY Acad. Sci. (2000) 920:206-208.
  • SELKOE DJ: Translating cell biology into therapeutic advances in Alzheimer's disease. Nature (1999) 399(6738 Suppl.):A23-A31.
  • SINHA S, ANDERSON JP, BARBOUR R et al.: Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature (1999) 402(6761):537-540.
  • VASSAR R, BENNETT BD, BABU-KHAN S et al.: β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science (1999) 286(5440):735-741.
  • CAI H, WANG Y, MCCARTHY D et al.: BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat. Neurosci. (2001) 4(3):233-234.
  • LUO Y, BOLON B, KAHN S et al.: Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nat. Neurosci. (2001) 4(3):231-232.
  • KANG J, LEMAIRE H-G, UNTERBECK A et al.: The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature (1987) 325:733-736.
  • GOLDGABER D, LERMAN M, MCBRIDE O, SAFFIOTTI J, GAJDUSEK D: Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science (1987) 235:877-880.
  • TANZI R, GUSELLA J, WATKINS P et al.: Amyloid β protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer locus. Science (1987) 235:880-884.
  • WEBSTER MT, GROOME N, FRANCIS PT et al.: A novel protein, amyloid precursor-like protein 2, is present in human brain, cerebrospinal fluid and conditioned media. Biochem. J. (1995) 310(Part 1):95-99.
  • SISODIA SS, ST GEORGE-HYSLOP PH: γ-Secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nat. Rev. Neurosci. (2002) 3(4):281-290.
  • EDBAUER D, WINKLER E, REGULA JT et al.: Reconstitution of γ-secretase activity. Nat. Cell Biol. (2003) 5(5):486-488.
  • TAKASUGI N, TOMITA T, HAYASHI I et al.: The role of presenilin cofactors in the γ-secretase complex. Nature (2003) 422(6930):438-441.
  • KIMBERLY WT, LAVOIE MJ, OSTASZEWSKI BL et al.: γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. USA (2003) 100(11):6382-6387.
  • DE STROOPER B: Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-secretase complex. Neuron (2003) 38(1):9-12.
  • ANNAERT WG, LEVESQUE L, CRAESSAERTS K et al.: Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J. Cell Biol. (1999) 147(2):277-294.
  • ALLINSON TM, PARKIN ET, TURNER AJ, HOOPER NM: ADAMs family members as amyloid precursor protein α-secretases. J. Neurosci. Res. (2003) 74(3):342-352.
  • ANDERSON JP, CHEN Y, KIM KS, ROBAKIS NK: An alternative secretase cleavage produces soluble Alzheimer amyloid precursor protein containing a potentially amyloidogenic sequence. J. Neurochem. (1992) 59(6):2328-2331.
  • KOJRO E, FAHRENHOLZ F: The non-amyloidogenic pathway: structure and function of α-secretases. Subcell. Biochem. (2005) 38:105-127.
  • GRALLE M, FERREIRA ST: Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog. Neurobiol. (2007) 82(1):11-32.
  • HOOPER NM, TURNER AJ: The search for α-secretase and its potential as a therapeutic approach to Alzheimer s disease. Curr. Med. Chem. (2002) 9(11):1107-1119.
  • BRAAK H, BRAAK E: Evolution of the neuropathology of Alzheimer's disease. Acta Neurol. Scand. Suppl. (1996) 165:3-12.
  • MINOSHIMA S, FOSTER NL, KUHL DE: Posterior cingulate cortex in Alzheimer's disease. Lancet (1994) 344(8926):895.
  • ZOLA-MORGAN S, SQUIRE LR, AMARAL DG: Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys. J. Neurosci. (1989) 9(3):898-913.
  • MASLIAH E, TERRY R: The role of synaptic pathology in the mechanisms of dementia in Alzheimer's disease. Clin. Neurosci. (1994) 1:192-198.
  • TERRY R, MASLIAH E, SALMON D et al.: Physical basis of cognitive alterations in Alzheimer disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. (1991) 30:572-580.
  • DEKOSKY S, SCHEFF S: Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann. Neurol. (1990) 27:457-464.
  • DEKOSKY ST, SCHEFF SW, STYREN SD: Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration (1996) 5(4):417-421.
  • SCHEFF SW, PRICE DA: Synaptic pathology in Alzheimer's disease: a review of ultrastructural studies. Neurobiol. Aging (2003) 24(8):1029-1046.
  • COTMAN C, CUMMINGS B, PIKE C: Molecular cascades in adaptive versus pathological plasticity. In: Neurodegeneration. Gorio A (Ed.), Raven Press, New York, USA (1993):217-240.
  • MASLIAH E: Recent advances in the understanding of the role of synaptic proteins in Alzheimer's disease and other neurodegenerative disorders. J. Alzheimer's Dis. (2001) 3:1-9.
  • VAN PRAAG H, SCHINDER AF, CHRISTIE BR et al.: Functional neurogenesis in the adult hippocampus. Nature (2002) 415(6875):1030-1034.
  • GAGE FH, KEMPERMANN G, PALMER TD, PETERSON DA, RAY J: Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. (1998) 36(2):249-266.
  • JIN K, PEEL AL, MAO XO et al.: Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl. Acad. Sci. USA (2004) 101(1):343-347.
  • BOEKHOORN K, JOELS M, LUCASSEN PJ: Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol. Dis. (2006) 24(1):1-14.
  • WALSH DM, SELKOE DJ: Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett. (2004) 11(3):213-228.
  • GLABE CC: Amyloid accumulation and pathogenesis of Alzheimer's disease: significance of monomeric, oligomeric and fibrillar Aβ. Subcell. Biochem. (2005) 38:167-177.
  • GLABE CG: Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging (2006) 27(4):570-575.
  • GLABE CG, KAYED R: Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology (2006) 66(2 Suppl. 1):S74-S78.
  • LAUDERBACK CM, HACKETT JM, KELLER JN et al.: Vulnerability of synaptosomes from apoE knock-out mice to structural and oxidative modifications induced by Aβ(1 – 40): implications for Alzheimer's disease. Biochemistry (2001) 40(8):2548-2554.
  • DRAKE J, LINK CD, BUTTERFIELD DA: Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid β-peptide (1 – 42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging (2003) 24(3):415-420.
  • BUSH A, PETTINGELL W, MULTHAUP G et al.: Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science (1994) 265:1464-1467.
  • CASTELLANI RJ, ZHU X, LEE HG et al.: Neuropathology and treatment of Alzheimer disease: did we lose the forest for the trees? Expert Rev. Neurother. (2007) 7(5):473-485.
  • WISNIEWSKI T, FRANGIONE B: Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. (1992) 135(2):235-238.
  • NIXON RA, CATALDO AM, PASKEVICH PA et al.: The lysosomal system in neurons. Involvement at multiple stages of Alzheimer's disease pathogenesis. Ann. NY Acad. Sci. (1992) 674:65-88.
  • BLURTON-JONES M, LAFERLA FM: Pathways by which Aβ facilitates tau pathology. Curr. Alzheimer Res. (2006) 3(5):437-448.
  • IWATA N, TSUBUKI S, TAKAKI Y et al.: Metabolic regulation of brain Aβ by neprilysin. Science (2001) 292(5521):1550-1552.
  • LUO JJ, WALLACE W, RICCIONI T et al.: Death of PC12 cells and hippocampal neurons induced by adenoviral-mediated FAD human amyloid precursor protein gene expression. J. Neurosci. Res. (1999) 55(5):629-642.
  • SELKOE DJ: The genetics and molecular pathology of Alzheimer's disease: roles of amyloid and the presenilins. Neurol. Clin. (2000) 18(4):903-922.
  • HOWELL S, NALBANTOGLU J, CRINE P: Neutral endopeptidase can hydrolyze β-amyloid(1 – 40) but shows no effect on β-amyloid precursor protein metabolism. Peptides (1995) 16(4):647-652.
  • IWATA N, TSUBUKI S, TAKAKI Y et al.: Identification of the major Aβ1 – 42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med. (2000) 6(2):143-150.
  • KANEMITSU H, TOMIYAMA T, MORI H: Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. (2003) 350(2):113-116.
  • HUANG SM, MOURI A, KOKUBO H et al.: Neprilysin-sensitive synapse-associated amyloid-β peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem. (2006) 281(26):17941-17951.
  • AKIYAMA H, KONDO H, IKEDA K, KATO M, MCGEER PL: Immunohistochemical localization of neprilysin in the human cerebral cortex: inverse association with vulnerability to amyloid β-protein (Aβ) deposition. Brain Res. (2001) 902(2):277-281.
  • CACCAMO A, ODDO S, SUGARMAN MC, AKBARI Y, LAFERLA FM: Age- and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol. Aging (2005) 26(5):645-654.
  • REILLY CE: Neprilysin content is reduced in Alzheimer brain areas. J. Neurol. (2001) 248(2):159-160.
  • YASOJIMA K, AKIYAMA H, MCGEER EG, MCGEER PL: Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neurosci. Lett. (2001) 297(2):97-100.
  • YASOJIMA K, MCGEER EG, MCGEER PL: Relationship between β-amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res. (2001) 919(1):115-121.
  • ODA M, MORINO H, MARUYAMA H et al.: Dinucleotide repeat polymorphisms in the neprilysin gene are not associated with sporadic Alzheimer's disease. Neurosci. Lett. (2002) 320(1-2):105-107.
  • SODEYAMA N, MIZUSAWA H, YAMADA M et al.: Lack of association of neprilysin polymorphism with Alzheimer's disease and Alzheimer's disease-type neuropathological changes. J. Neurol. Neurosurg. Psychiatry (2001) 71(6):817-818.
  • CLARIMON J, MUNOZ FJ, BOADA M et al.: Possible increased risk for Alzheimer's disease associated with neprilysin gene. J. Neural. Transm. (2003) 110(6):651-657.
  • SAKAI A, UJIKE H, NAKATA K et al.: Association of the neprilysin gene with susceptibility to late-onset Alzheimer's disease. Dement. Geriatr. Cogn. Disord. (2004) 17(3):164-169.
  • SHI J, ZHANG S, TANG M et al.: Mutation screening and association study of the neprilysin gene in sporadic Alzheimer's disease in Chinese persons. J. Gerontol. A. Biol. Sci. Med. Sci. (2005) 60(3):301-306.
  • HELISALMI S, HILTUNEN M, VEPSALAINEN S et al.: Polymorphisms in neprilysin gene affect the risk of Alzheimer's disease in finnish patients. J. Neurol. Neurosurg. Psychiatry (2004) 75(12):1746-1748.
  • DOLEV I, MICHAELSON DM: A nontransgenic mouse model shows inducible amyloid-β (Aβ) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade. Proc. Natl. Acad. Sci. USA (2004) 101(38):13909-13914.
  • IWATA N, MIZUKAMI H, SHIROTANI K et al.: Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-β peptide in mouse brain. J. Neurosci. (2004) 24(4):991-998.
  • MARR RA, ROCKENSTEIN E, MUKHERJEE A et al.: Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. (2003) 23(6):1992-1996.
  • HONG CS, GOINS WF, GOSS JR, BURTON EA, GLORIOSO JC: Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-β peptide in vivo. Gene Ther. (2006) 13(14):1068-1079.
  • LEISSRING MA, FARRIS W, CHANG AY et al.: Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron (2003) 40(6):1087-1093.
  • MOHAJERI MH, WOLLMER MA, NITSCH RM: Aβ 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. (2002) 277(38):35460-35465.
  • MOHAJERI MH, KUEHNLE K, LI H et al.: Anti-amyloid activity of neprilysin in plaque-bearing mouse models of Alzheimer's disease. FEBS Lett. (2004) 562(1-3):16-21.
  • CLARKE NA, FRANCIS PT: Cholinergic and glutamatergic drugs in Alzheimer's disease therapy. Expert Rev. Neurother. (2005) 5(5):671-682.
  • PERRY EK, TOMLINSON BE, BLESSED G et al.: Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. (1978) 2(6150):1457-1459.
  • FLEISHER AS, SOWELL BB, TAYLOR C et al.: Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology (2007) 68(19):1588-1595.
  • VAN DYCK CH, TARIOT PN, MEYERS B, MALCA RESNICK E: A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease. Alzheimer Dis. Assoc. Disord. (2007) 21(2):136-143.
  • KAETHER C, HAASS C: A lipid boundary separates APP and secretases and limits amyloid β-peptide generation. J. Cell Biol. (2004) 167(5):809-812.
  • ROCKENSTEIN E, ADAME A, MANTE M et al.: The neuroprotective effects of cerebrolysin trade mark in a transgenic model of Alzheimer's disease are associated with improved behavioral performance. J. Neural. Transm. (2003) 110(11):1313-1327.
  • RINGMAN JM, FRAUTSCHY SA, COLE GM, MASTERMAN DL, CUMMINGS JL: A potential role of the curry spice curcumin in Alzheimer's disease. Curr. Alzheimer Res. (2005) 2(2):131-136.
  • LIPTON SA: The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr. Alzheimer Res. (2005) 2(2):155-165.
  • ROBERSON ED, SCEARCE-LEVIE K, PALOP JJ et al.: Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science (2007) 316(5825):750-754.
  • HONG M, CHEN DC, KLEIN PS, LEE VM: Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J. Biol. Chem. (1997) 272(40):25326-25332.
  • ANDORFER C, KRESS Y, ESPINOZA M et al.: Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J. Neurochem. (2003) 86(3):582-590.
  • GLOVER DJ, LIPPS HJ, JANS DA: Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. (2005) 6(4):299-310.
  • KOOTSTRA NA, VERMA IM: Gene therapy with viral vectors. Annu. Rev. Pharmacol. Toxicol. (2003) 43:413-439.
  • RYAN DA, FEDEROFF HJ: Translational considerations for CNS gene therapy. Expert Opin. Biol. Ther. (2007) 7(3):305-318.
  • TUSZYNSKI MH, THAL L, PAY M et al.: A Phase I clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. (2005) 11(5):551-555.
  • CHEN KS, TUSZYNSKI MH, GAGE FH: Role of neurotrophic factors in Alzheimer's disease. Neurobiol. Aging (1989) 10(5):545-546; discussion 552-553.
  • POIRIER J, DELISLE MC, QUIRION R et al.: Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc. Natl. Acad. Sci. USA (1995) 92(26):12260-12264.
  • POMARA N, SHAO B, WISNIEWSKI T, MEHTA PD: Decreases in plasma Aβ1 – 40 levels with aging in non-demented elderly with ApoE-ϵ 4 allele. Neurochem. Res. (1998) 23(12):1563-1566.
  • SANAN DA, WEISGRABER KH, RUSSELL SJ et al.: Apolipoprotein E associates with β-amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J. Clin. Invest. (1994) 94(2):860-869.
  • ROSES AD: On the discovery of the genetic association of apolipoprotein E genotypes and common late-onset Alzheimer disease. J. Alzheimers Dis. (2006) 9(3 Suppl.):361-366.
  • ROSES AD, SAUNDERS AM: APOE is a major susceptibility gene for Alzheimer's disease. Curr. Opin. Biotechnol. (1994) 5(6):663-667.
  • DODART JC, MARR RA, KOISTINAHO M et al.: Gene delivery of human apolipoprotein E alters brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA (2005) 102(4):1211-1216.
  • SADOWSKI M, PANKIEWICZ J, SCHOLTZOVA H et al.: A synthetic peptide blocking the apolipoprotein E/β-amyloid binding mitigates β-amyloid toxicity and fibril formation in vitro and reduces β-amyloid plaques in transgenic mice. Am. J. Pathol. (2004) 165(3):937-948.
  • MINERS JS, VAN HELMOND Z, CHALMERS K et al.: Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. (2006) 65(10):1012-1021.
  • RUSSO R, BORGHI R, MARKESBERY W, TABATON M, PICCINI A: Neprylisin decreases uniformly in Alzheimer's disease and in normal aging. FEBS Lett. (2005) 579(27):6027-6030.
  • POIRIER R, WOLFER DP, WELZL H et al.: Neuronal neprilysin overexpression is associated with attenuation of Aβ-related spatial memory deficit. Neurobiol. Dis. (2006) 24(3):475-483.
  • MARR RA, GUAN H, ROCKENSTEIN E et al.: Neprilysin regulates amyloid β peptide levels. J. Mol. Neurosci. (2004) 22(1-2):5-11.
  • SPENCER BJ, VERMA IM: Targeted delivery of proteins across the blood–brain barrier. Proc. Natl. Acad. Sci. USA (2007) 104(18):7594-7599.
  • THORPE JR, MOSAHEB S, HASHEMZADEH-BONEHI L et al.: Shortfalls in the peptidyl-prolyl cis-trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol. Dis. (2004) 17(2):237-249.
  • SULTANA R, BOYD-KIMBALL D, POON HF et al.: Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: a redox proteomics analysis. Neurobiol. Aging (2006) 27(7):918-925.
  • LIOU YC, SUN A, RYO A et al.: Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature (2003) 424(6948):556-561.
  • PARK HJ, KIM SS, SEONG YM et al.: β-Amyloid precursor protein is a direct cleavage target of HtrA2 serine protease. Implications for the physiological function of HtrA2 in the mitochondria. J. Biol. Chem. (2006) 281(45):34277-34287.
  • HARBORTH J, ELBASHIR SM, BECHERT K, TUSCHL T, WEBER K: Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. (2001) 114(Part 24):4557-4565.
  • MARTINEZ J, PATKANIOWSKA A, URLAUB H, LUHRMANN R, TUSCHL T: Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell (2002) 110(5):563-574.
  • BRUMMELKAMP TR, BERNARDS R, AGAMI R: A system for stable expression of short interfering RNAs in mammalian cells. Science (2002) 296(5567):550-553.
  • TISCORNIA G, SINGER O, IKAWA M, VERMA IM: A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA (2003) 100(4):1844-1848.
  • TISCORNIA G, SINGER O, VERMA IM: Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat. Protoc. (2006) 1(1):234-240.
  • DAWSON GR, SEABROOK GR, ZHENG H et al.: Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the β-amyloid precursor protein. Neuroscience (1999) 90(1):1-13.
  • FITZJOHN SM, MORTON RA, KUENZI F et al.: Similar levels of long-term potentiation in amyloid precursor protein -null and wild-type mice in the CA1 region of picrotoxin treated slices. Neurosci. Lett. (2000) 288(1):9-12.
  • SENECHAL Y, LARMET Y, DEV KK: Unraveling in vivo functions of amyloid precursor protein: insights from knockout and knockdown studies. Neurodegener. Dis. (2006) 3(3):134-147.
  • XIE Z, ROMANO DM, KOVACS DM, TANZI RE: Effects of RNA interference-mediated silencing of γ-secretase complex components on cell sensitivity to caspase-3 activation. J. Biol. Chem. (2004) 279(33):34130-34137.
  • LUO HM, DENG H, XIAO F et al.: Down-regulation amyloid β-protein 42 production by interfering with transcript of presenilin 1 gene with siRNA. Acta Pharmacol. Sin. (2004) 25(12):1613-1618.
  • WONG P, ZHENG H, CHEN H et al.: Presenilin 1 is required for Notch 1 and Dll1 expression in the paraxial mesoderm. Nature (1997) 387:288-292.
  • KAO SC, KRICHEVSKY AM, KOSIK KS, TSAI LH: BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. (2004) 279(3):1942-1949.
  • SINGER O, MARR RA, ROCKENSTEIN E et al.: Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. (2005) 8(10):1343-1349.
  • LEE MS, TSAI LH: Cdk5: one of the links between senile plaques and neurofibrillary tangles? J. Alzheimer Dis. (2003) 5(2):127-137.
  • LU KP, LIOU YC, VINCENT I: Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. Bioessays (2003) 25(2):174-181.
  • PHIEL CJ, WILSON CA, LEE VM, KLEIN PS: GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature (2003) 423(6938):435-439.
  • ROCKENSTEIN E, MANTE M, ADAME A et al.: Effects of cerebrolysin (trade mark) on neurogenesis in an APP transgenic model of Alzheimer's disease. Acta Neuropathol. (Berl) (2007) 113(3):265-275.
  • PLATTNER F, ANGELO M, GIESE KP: The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem. (2006) 281(35):25457-25465.
  • WEGGEN S, ERIKSEN JL, DAS P et al.: A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature (2001) 414(6860):212-216.
  • ANTHONY JC, BREITNER JC, ZANDI PP et al.: Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the cache county study. Neurology (2000) 54(11):2066-2071.
  • BEARD CM, WARING SC, O'BRIEN PC, KURLAND LT, KOKMEN E: Nonsteroidal anti-inflammatory drug use and Alzheimer's disease: a case-control study in Rochester, Minnesota, 1980 through 1984. Mayo Clin. Proc. (1998) 73(10):951-955.
  • HIROHATA M, ONO K, NAIKI H, YAMADA M: Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro. Neuropharmacology (2005) 49(7):1088-1099.
  • THOMAS T, NADACKAL TG, THOMAS K: Aspirin and non-steroidal anti-inflammatory drugs inhibit amyloid-β aggregation. Neuroreport (2001) 12(15):3263-3267.
  • OGAWA O, UMEGAKI H, SUMI D et al.: Inhibition of inducible nitric oxide synthase gene expression by indomethacin or ibuprofen in β-amyloid protein-stimulated J774 cells. Eur. J. Pharmacol. (2000) 408(2):137-141.
  • NARLAWAR R, PEREZ REVUELTA BI, HAASS C et al.: Scaffold of the cyclooxygenase-2 (COX-2) inhibitor carprofen provides Alzheimer γ-secretase modulators. J. Med. Chem. (2006) 49(26):7588-7591.
  • TORTOSA E, AVILA J, PEREZ M: Acetylsalicylic acid decreases tau phosphorylation at serine 422. Neurosci. Lett. (2006) 396(1):77-80.
  • GAO F, BALES KR, DODEL RC et al.: NF-κB mediates IL-1β-induced synthesis/release of α2-macroglobulin in a human glial cell line. Brain Res. Mol. Brain Res. (2002) 105(1-2):108-114.
  • LIM GP, YANG F, CHU T et al.: Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci. (2000) 20(15):5709-5714.
  • ROCKENSTEIN E, ADAME A, MANTE M et al.: Amelioration of the cerebrovascular amyloidosis in a transgenic model of Alzheimer's disease with the neurotrophic compound cerebrolysin. J. Neural. Transm. (2005) 112(2):269-282.
  • ROCKENSTEIN E, MALLORY M, MANTE M et al.: Effects of cerebrolysin on amyloid-β deposition in a transgenic model of Alzheimer's disease. J. Neural. Transm. Suppl. (2002) (62):327-336.
  • RUTHER E, RITTER R, APECECHEA M, FREITAG S, WINDISCH M: Efficacy of cerebrolysin in Alzheimer's disease. In: New Trends in the Diagnosis and Therapy of Alzheimer's Disease. Jellinger K et al. (Eds), Springer-Verlag, Vienna, Austria (1994):131-141.
  • RUTHER E, RITTER R, APECECHEA M, FREYTAG S, WINDISCH M: Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer's type (SDAT). Pharmacopsychiatry (1994) 27:32-40.
  • MALLORY M, HONER W, HSU L, JOHNSON R, MASLIAH E: In vitro synaptotrophic effects of cerebrolysin in NT2N cells. Acta Neuropathol. (1999) 97:437-446.
  • FRANCIS-TURNER L, VALOUSKOVA V: Nerve growth factor and nootropic drug cerebrolysin but not fibroblast growth factor can reduce spatial memory impairment elicited by fimbria-fornix transection: short-term study. Neurosci. Lett. (1996) 202:1-4.
  • MASLIAH E, ARMASOLO F, VEINBERGS I, MALLORY M, SAMUEL W: Cerebrolysin ameliorates performance deficits and neuronal damage in apolipoprotein E-deficient mice. Pharmacol. Biochem. Behav. (1999) 62:239-245.
  • VEINBERGS I, MANTE M, MALLORY M, MASLIAH E: Neurotrophic effects of cerebrolysin in animal models of excitotoxicity. J. Neural. Transm. Suppl. (2000) 59:273-280.
  • ERIKSSON PS, PERFILIEVA E, BJORK-ERIKSSON T et al.: Neurogenesis in the adult human hippocampus. Nat. Med. (1998) 4(11):1313-1317.
  • PALMER TD, MARKAKIS EA, WILLHOITE AR, SAFAR F, GAGE FH: Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. (1999) 19(19):8487-8497.
  • LAZAROV O, ROBINSON J, TANG YP et al.: Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell (2005) 120(5):701-713.
  • JIN K, XIE L, MAO XO, GREENBERG DA: Alzheimer's disease drugs promote neurogenesis. Brain Res. (2006) 1085(1):183-188.
  • BECKER M, LAVIE V, SOLOMON B: Stimulation of endogenous neurogenesis by anti-EFRH immunization in a transgenic mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA (2007) 104(5):1691-1696.
  • LAI K, KASPAR BK, GAGE FH, SCHAFFER DV: Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. (2003) 6(1):21-27.
  • PALMER TD, RAY J, GAGE FH: FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. (1995) 6(5):474-486.
  • MARAMBAUD P, ZHAO H, DAVIES P: Resveratrol promotes clearance of Alzheimer's disease amyloid-β peptides. J. Biol. Chem. (2005) 280(45):37377-37382.
  • DASGUPTA B, MILBRANDT J: Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA (2007) 104(17):7217-7222.
  • ONO K, HASEGAWA K, NAIKI H, YAMADA M: Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro. J. Neurosci. Res. (2004) 75(6):742-750.
  • CALON F, LIM GP, YANG F et al.: Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron (2004) 43(5):633-645.
  • COLE GM, LIM GP, YANG F et al.: Prevention of Alzheimer's disease: ω-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging (2005) 26(Suppl. 1):133-136.
  • LIM GP, CALON F, MORIHARA T et al.: A diet enriched with the ω-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. (2005) 25(12):3032-3040.
  • MAIA L, DE MENDONCA A: Does caffeine intake protect from Alzheimer's disease? Eur. J. Neurol. (2002) 9(4):377-382.
  • ARENDASH GW, SCHLEIF W, REZAI-ZADEH K et al.: Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain β-amyloid production. Neuroscience (2006) 142(4):941-952.
  • DALL'IGNA OP, PORCIUNCULA LO, SOUZA DO, CUNHA RA, LARA DR: Neuroprotection by caffeine and adenosine A2A receptor blockade of β-amyloid neurotoxicity. Br. J. Pharmacol. (2003) 138(7):1207-1209.
  • SCHENK D, BARBOUR R, DUNN W et al.: Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature (1999) 400(6740):173-177.
  • DEMATTOS RB, BALES KR, CUMMINS DJ et al.: Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA (2001) 98(15):8850-8855.
  • MOHAJERI MH, SAINI K, SCHULTZ JG et al.: Passive immunization against β-amyloid peptide protects central nervous system (CNS) neurons from increased vulnerability associated with an Alzheimer's disease-causing mutation. J. Biol. Chem. (2002) 277(36):33012-33017.
  • MORGAN D, DIAMOND DM, GOTTSCHALL PE et al.: Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature (2000) 408(6815):982-985.
  • NIKOLIC WV, BAI Y, OBREGON D et al.: Transcutaneous β-amyloid immunization reduces cerebral β-amyloid deposits without T cell infiltration and microhemorrhage. Proc. Natl. Acad. Sci. USA (2007) 104(7):2507-2512.
  • WILCOCK DM, DICARLO G, HENDERSON D et al.: Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci. (2003) 23(9):3745-3751.
  • WILCOCK DM, ROJIANI A, ROSENTHAL A et al.: Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J. Neuroinflamm. (2004) 1(1):24.
  • DODEL RC, DU Y, DEPBOYLU C et al.: Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry (2004) 75(10):1472-1474.
  • HOCK C, KONIETZKO U, STREFFER JR et al.: Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron (2003) 38(4):547-554.
  • NICOLL JA, BARTON E, BOCHE D et al.: Aβ species removal after Aβ42 immunization. J. Neuropathol. Exp. Neurol. (2006) 65(11):1040-1048.
  • ASUNI AA, BOUTAJANGOUT A, SCHOLTZOVA H et al.: Vaccination of Alzheimer's model mice with Aβ derivative in alum adjuvant reduces Aβ burden without microhemorrhages. Eur. J. Neurosci. (2006) 24(9):2530-2542.
  • KOLLER MF, MOHAJERI MH, HUBER M et al.: Active immunization of mice with an Aβ-Hsp70 vaccine. Neurodegener. Dis. (2004) 1(1):20-28.
  • MAIER M, SEABROOK TJ, LAZO ND et al.: Short amyloid-β (Aβ) immunogens reduce cerebral Aβ load and learning deficits in an Alzheimer's disease mouse model in the absence of an Aβ-specific cellular immune response. J. Neurosci. (2006) 26(18):4717-4728.
  • OKURA Y, MIYAKOSHI A, KOHYAMA K et al.: Nonviral Aβ DNA vaccine therapy against Alzheimer's disease: long-term effects and safety. Proc. Natl. Acad. Sci. USA (2006) 103(25):9619-9624.
  • QU B, BOYER PJ, JOHNSTON SA, HYNAN LS, ROSENBERG RN: Aβ42 gene vaccination reduces brain amyloid plaque burden in transgenic mice. J. Neurol. Sci. (2006) 244(1-2):151-158.
  • YOUM JW, KIM H, HAN JH et al.: Transgenic potato expressing Aβ reduce Aβ burden in Alzheimer's disease mouse model. FEBS Lett. (2005) 579(30):6737-6744.
  • LAMBERT MP, VELASCO PT, CHANG L et al.: Monoclonal antibodies that target pathological assemblies of Aβ. J. Neurochem. (2007) 100(1):23-35.
  • LEVITES Y, DAS P, PRICE RW et al.: Anti-Aβ42- and anti-Aβ40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J. Clin. Invest. (2006) 116(1):193-201.
  • ISTRIN G, BOSIS E, SOLOMON B: Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-β peptide. J. Neurosci. Res. (2006) 84(2):434-443.
  • SOLOMON B: Intravenous immunoglobulin and Alzheimer's disease immunotherapy. Curr. Opin. Mol. Ther. (2007) 9(1):79-85.
  • CARTY NC, WILCOCK DM, ROSENTHAL A et al.: Intracranial administration of deglycosylated C-terminal-specific anti-Aβ antibody efficiently clears amyloid plaques without activating microglia in amyloid-depositing transgenic mice. J. Neuroinflamm. (2006) 3:11.
  • REBE S, SOLOMON B: Deglycosylation of anti-β amyloid antibodies inhibits microglia activation in BV-2 cellular model. Am. J. Alzheimers Dis. Other Demen. (2005) 20(5):303-313.
  • FUKUCHI K, ACCAVITTI-LOPER MA, KIM HD et al.: Amelioration of amyloid load by anti-Aβ single-chain antibody in Alzheimer mouse model. Biochem. Biophys. Res. Commun. (2006) 344(1):79-86.
  • FUKUCHI K, TAHARA K, KIM HD et al.: Anti-Aβ single-chain antibody delivery via adeno-associated virus for treatment of Alzheimer's disease. Neurobiol. Dis. (2006) 23(3):502-511.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.