188
Views
38
CrossRef citations to date
0
Altmetric
Review

Development of adult pluripotent stem cell therapies for ischemic injury and disease

, , , &
Pages 173-184 | Published online: 24 Jan 2007

Bibliography

  • EVANS MJ, KAUFMAN MH: Establishment in culture of pluripotential cells from mouse embryos. Nature (1981) 292(5819):154-156.
  • THOMSON JA, ITSKOVITZ-ELDOR J, SHAPIRO SS et al.: Embryonic stem cell lines derived from human blastocysts. Science (1998) 282(5391):1145-1147.
  • BRYDER D, ROSSI DJ, WEISSMAN IL: Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol. (2006) 169(2):338-346.
  • STEMPLE DL, ANDERSON DJ: Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell (1992) 71(6):973-985.
  • RIETZE RL, VALCANIS H, BROOKER GF et al.: Purification of a pluripotent neural stem cell from the adult mouse brain. Nature (2001) 412(6848):736-739.
  • SEABERG RM, SMUKLER SR, KIEFFER TJ et al.: Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. (2004) 22(9):1115-1124.
  • TOMA JG, AKHAVAN M, FERNANDES KJ et al.: Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. (2001) 3(9):778-784.
  • JIANG Y, JAHAGIRDAR BN, REINHARDT RL et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature (2002) 418(6893):41-49.
  • YOON YS, WECKER A, HEYD L et al.: Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest. (2005) 115(2):326-338.
  • KUCIA M, RECA R, CAMPBELL FR et al.: A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia (2006) 20(5):857-869.
  • KOGLER G, SENSKEN S, AIREY JA et al.: A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. (2004) 200(2):123-135.
  • VERFAILLIE CM: Adult stem cells: assessing the case for pluripotency. Trends Cell Biol. (2002) 12(11):502-508.
  • D’IPPOLITO G, DIABIRA S, HOWARD GA et al.: Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J. Cell Sci. (2004) 117(Pt 14):2971-2981.
  • OWEN M, FRIEDENSTEIN AJ: Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. (1988) 136:42-60.
  • PROCKOP DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Science (1997) 276(5309):71-74.
  • PITTENGER MF, MACKAY AM, BECK SC et al.: Multilineage potential of adult human mesenchymal stem cells. Science (1999) 284(5411):143-147.
  • PITTENGER MF, MOSCA JD, MCINTOSH KR: Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr. Top. Microbiol. Immunol. (2000) 251:3-11.
  • GIMBLE J, GUILAK F: Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy (2003) 5(5):362-369.
  • KOPEN GC, PROCKOP DJ, PHINNEY DG: Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA (1999) 96(19):10711-10716.
  • HORWITZ EM, LE BLANC K, DOMINICI M et al.: Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy (2005) 7(5):393-395.
  • BARRY FP, MURPHY JM, ENGLISH K, MAHON BP: Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev. (2005) 14(3):252-265.
  • LE BLANC K, PITTENGER M: Mesenchymal stem cells: progress toward promise. Cytotherapy (2005) 7(1):36-45.
  • LE BLANC K, RINGDEN O: Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. (2005) 11(5):321-334.
  • JIANG Y, VAESSEN B, LENVIK T et al.: Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. (2002) 30(8):896-904.
  • REYES M, LUND T, LENVIK T et al.: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood (2001) 98(9):2615-2625.
  • REYES M, VERFAILLIE CM: Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann. NY Acad. Sci. (2001) 938:231-233; discussion 233-235.
  • JAHAGIRDAR BN, MILLER JS, SHET A, VERFAILLIE CM: Novel therapies for chronic myelogenous leukemia. Exp. Hematol. (2001) 29(5):543-556.
  • VAN’T HOF W, MAL N, RABER A et al.: Multipotent adult progenitor cells. In: Contemporary Cardiology: Stem Cells and Myocardial Regeneration. Penn MS (Ed.), Humana Press, Inc., MA, USA (2006):39-50.
  • ANJOS-AFONSO F, BONNET D: Non-hematopoietic/endothelial SSEA-1pos cells defines the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood (2006) (In Press).
  • D’IPPOLITO G, DIABIRA S, HOWARD GA, ROOS BA, SCHILLER PC: Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone (2006) 39(3):513-522.
  • KUCIA M, RECA R, JALA VR et al.: Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia (2005) 19(7):1118-1127.
  • GUAN K, NAYERNIA K, MAIER LS et al.: Pluripotency of spermatogonial stem cells from adult mouse testis. Nature (2006) 440(7088):1199-1203.
  • LEE OK, KUO TK, CHEN WM et al.: Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood (2004) 103(5):1669-1675.
  • KUES WA, PETERSEN B, MYSEGADES W, CARNWATH JW, NIEMANN H: Isolation of murine and porcine fetal stem cells from somatic tissue. Biol. Reprod. (2005) 72(4):1020-1028.
  • MITCHELL KE, WEISS ML, MITCHELL BM et al.: Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells (2003) 21(1):50-60.
  • SARUGASER R, LICKORISH D, BAKSH D, HOSSEINI MM, DAVIES JE: Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells (2005) 23(2):220-229.
  • DE COPPI P, BARTSCH G JR, SIDDIQUI MM et al.: Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. (2007) 25(1):100-106
  • DELO DM, DE COPPI P, BARTSCH G JR, ATALA A: Amniotic fluid and placental stem cells. Methods Enzymol. (2006) 419:426-438.
  • RAFF M: Adult stem cell plasticity: fact or artifact? Annu. Rev. Cell Dev. Biol. (2003) 19:1-22.
  • WAGERS AJ, WEISSMAN IL: Plasticity of adult stem cells. Cell (2004) 116(5):639-648.
  • THOM T, HAASE N, ROSAMOND W et al.: Heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation (2006) 113(6):e85-e151.
  • ROBBINS MA, O’CONNELL JB: Economic impact of heart failure. In: Management of End-Stage Heart Disease. Rose EA, Warner-Stevenson L (Eds), Lippincott-Raven, Philadelphia, PA, USA (1998):3-13.
  • BRAUNWALD E, BRISTOW MR: Congestive heart failure: fifty years of progress. Circulation (2000) 102(20 Suppl. 4):IV14-IV23.
  • LAFLAMME MA, MURRY CE: Regenerating the heart. Nat. Biotechnol. (2005) 23(7):845-856.
  • DIMMELER S, ZEIHER AM, SCHNEIDER MD: Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. (2005) 115(3):572-583.
  • ANVERSA P, KAJSTURA J, LERI A, BOLLI R: Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation (2006) 113(11):1451-1463.
  • DENGLER TJ, KATUS HA: Stem cell therapy for the infarcted heart (‘cellular cardiomyoplasty’). Herz (2002) 27(7):598-610.
  • CLELAND JG, FREEMANTLE N, COLETTA AP, CLARK AL: Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur. J. Heart Fail. (2006) 8(1):105-110.
  • ZAVOS PM: Stem cells and cellular therapy: potential treatment for cardiovascular diseases. Int. J. Cardiol. (2006) 107(1):1-6.
  • ASSMUS B, HONOLD J, SCHACHINGER V et al.: Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. (2006) 355(12):1222-1232.
  • SCHACHINGER V, ERBS S, ELSASSER A et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. (2006) 355(12):1210-1221.
  • HEESCHEN C, LEHMANN R, HONOLD J et al.: Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation (2004) 109(13):1615-1622.
  • SCHEUBEL RJ, BARTLING B, STEIN S et al.: Age-dependent myocardial reinduction of apoptosis inhibitors under VAD in heart failure. Thorac. Cardiovasc. Surg. (2001) 49(5):268-272.
  • KIM BO, TIAN H, PRASONGSUKARN K et al.: Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation (2005) 112(9 Suppl.):I96-I104.
  • ZUK PA, ZHU M, ASHJIAN P et al.: Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell (2002) 13(12):4279-4295.
  • AMADO LC, SALIARIS AP, SCHULERI KH et al.: Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA (2005) 102(32):11474-11479.
  • SAFFORD KM, HICOK KC, SAFFORD SD et al.: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. (2002) 294(2):371-379.
  • WOODBURY D, SCHWARZ EJ, PROCKOP DJ, BLACK IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. (2000) 61(4):364-370.
  • MINGUELL JJ, ERICES A: Mesenchymal stem cells and the treatment of cardiac disease. Exp. Biol. Med. (Maywood) (2006) 231(1):39-49.
  • ZIMMET JM, HARE JM: Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res. Cardiol. (2005) 100(6):471-481.
  • PARKER AM, KATZ AJ: Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin. Biol. Ther. (2006) 6(6):567-578.
  • STREM BM, HICOK KC, ZHU M et al.: Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med. (2005) 54(3):132-141.
  • VAN’T HOF W, MAL N, HUANG Y et al.: Direct delivery of syngeneic and allogeneic multipotent adult progenitor cells improves cardiac function after myocardial infarct. Cytotherapy (2006) (In Press).
  • ZENG L, HU Q, WANG X et al.: Bioenergetic and functional consequences of bone marrow derived multipotent progenitor cell transplantation in hearts with postinfarction LV remodeling. Circulation (2006) (In Press).
  • GOLOMB BA, DANG TT, CRIQUI MH: Peripheral arterial disease: morbidity and mortality implications. Circulation (2006) 114(7):688-699.
  • TATEISHI-YUYAMA E, MATSUBARA H, MUROHARA T et al.: Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet (2002) 360(9331):427-435.
  • LENK K, ADAMS V, LURZ P et al.: Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur. Heart J. (2005) 26(18):1903-1909.
  • HIGASHI Y, KIMURA M, HARA K et al.: Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation (2004) 109(10):1215-1218.
  • IWASE T, NAGAYA N, FUJII T et al.: Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc. Res. (2005) 66(3):543-551.
  • KAMIHATA H, MATSUBARA H, NISHIUE T et al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation (2001) 104(9):1046-1052.
  • KIM SW, HAN H, CHAE GT et al.: Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger’s disease and ischemic limb disease animal model. Stem Cells (2006) 24(6):1620-1626.
  • NAKAGAMI H, MORISHITA R, MAEDA K et al.: Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. (2006) 13(2):77-81.
  • HSU L-Y, WRAGG A, ANDERSON S et al.: Assessment of multi-potent progenitor cell transplantation in an ischemic rat hind-limb model using contrast-enhanced MRI at 7T. J. Magn. Reson. Imaging (2006) (In Press).
  • DAVENPORT R, DENNIS M: Neurological emergencies: acute stroke. J. Neurol. Neurosurg. Psychiatry (2000) 68(3):277-288.
  • FAGAN SC, MORGENSTERN LB, PETITTA A et al.: Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke. NINDS rt-PA Stroke Study Group. Neurology (1998) 50(4):883-890.
  • BORLONGAN CV, FOURNIER C, STAHL CE et al.: Gene therapy, cell transplantation and stroke. Front. Biosci. (2006) 11:1090-1101.
  • BORLONGAN CV, TAJIMA Y, TROJANOWSKI JQ, LEE VM, SANBERG PR: Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp. Neurol. (1998) 149(2):310-321.
  • KLEPPNER SR, ROBINSON KA, TROJANOWSKI JQ, LEE VM: Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J. Comp. Neurol. (1995) 357(4):618-632.
  • KONDZIOLKA D, WECHSLER L, GOLDSTEIN S et al.: Transplantation of cultured human neuronal cells for patients with stroke. Neurology (2000) 55(4):565-569.
  • CHEN J, LI Y, CHOPP M: Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology (2000) 39(5):711-716.
  • LI Y, CHOPP M, CHEN J et al.: Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J. Cereb. Blood Flow Metab. (2000) 20(9):1311-1319.
  • LI Y, CHEN J, WANG L, LU M, CHOPP M: Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology (2001) 56(12):1666-1672.
  • CHEN J, SANBERG PR, LI Y et al.: Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke (2001) 32(11):2682-2688.
  • HESS DC, HILL WD, MARTIN-STUDDARD A et al.: Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke (2002) 33(5):1362-1368.
  • WILLING AE, LIXIAN J, MILLIKEN M et al.: Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J. Neurosci. Res. (2003) 73(3):296-307.
  • CHEN J, ZHANG ZG, LI Y et al.: Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res. (2003) 92(6):692-699.
  • BANG OY, LEE JS, LEE PH, LEE G: Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. (2005) 57(6):874-882.
  • KEENE CD, ORTIZ-GONZALEZ XR, JIANG Y et al.: Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant. (2003) 12(3):201-213.
  • ZHAO LR, DUAN WM, REYES M et al.: Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. (2002) 174(1):11-20.
  • HESS DC, YASUHARA T, MATSUKAWA N et al.: Transplantation of bone marrow-derived multipotent adult progenitor cells in adult and neonatal models of ischemic injury. American Academy of Neurology Annual Meeting. San Diego, CA, USA (1 – 8 April 2006).
  • MAYS RW, YASUHARA T, MATSUKAWA N et al.: Sustained and statistically significant motor and neurological improvements following intracerebral delivery of xenogeneic (human) or allogeneic (rat) bone marrow-derived Multistem™ cells in adult rats with cortical infarcts in the absence of immunosupression. International Society for Stem Cell Research Annual Meeting. Toronto, Canada (28 June – 2 July 2006).
  • HESS DC, YASUHARA T, HARA K et al.: Minimally invasive intravenous delivery of human bone marrow-derived multipotent adult progenitor cells leads to engraftment and host cell loss reduction in the ischemic brain, and stable behavioral recovery in experimental stroke. Stem Cells: What Future for the Therapy? Scientific Aspects and Bioethical Problems. Rome, Italy (14 – 16 September 2006).
  • CAPLAN AI, DENNIS JE: Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. (2006) 98(5):1076-1084.
  • HOWELLS D: Stem cells: do they replace or stimulate? Stroke (2003) 34(8):2082-2083.
  • CHEN X, LI Y, WANG L et al.: Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology (2002) 22(4):275-279.
  • SHYU WC, LIN SZ, LEE CC, LIU DD, LI H: Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ (2006) 174(7):927-933.
  • BORLONGAN CV, HESS DC: New hope for stroke patients: mobilization of endogenous stem cells. CMAJ (2006) 174(7):954-955.
  • SUN Y, JIN K, XIE L et al.: VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. (2003) 111(12):1843-1851.
  • YASUHARA T, MATSUKAWA N, YU G et al.: Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant. (2006) 15(3):231-238.
  • YASUHARA T, MATSUKAWA N, YU G et al.: Transplantation of cryopreserved human bone marrow-derived multipotent adult progenitor cells for neonatal hypoxic-ischemic injury: targeting the hippocampus. Rev. Neurosci. (2006) 17(1-2):215-225.
  • DEANS RJ, MOSELEY AB: Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. (2000) 28(8):875-884.
  • MANGI AA, NOISEUX N, KONG D et al.: Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. (2003) 9(9):1195-1201.
  • GNECCHI M, HE H, NOISEUX N et al.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. (2006) 20(6):661-669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.